
UNIT-2(FLOW GRAPHS AND PATH TESTING)

FLOWGRAPHS AND PATH TESTING:

This unit gives an in depth overview of path testing and its applications.

At the end of this unit, the student will be able to:

 Understand the concept of path testing.

 Identify the components of a control flow diagram and compare the same with a flowchart.

 Represent the control flow graph in the form of a Linked List notation.

 Understand the path testing and selection criteria and their limitations.

 Interpret a control flow-graph and demonstrate the complete path testing to achieve
C1+C2.

 Classify the predicates and variables as dependant/independant and
correlated/uncorrelated.

 Understand the path sensitizing method and classify whether the path is achievable or not.

 Identify the problem due to co-incidental correctness and choose a path instrumentation
method to overcome the problem.

BASICS OF PATH TESTING:

 PATH TESTING:

o Path Testing is the name given to a family of test techniques based on
judiciously selecting a set of test paths through the program.

o If the set of paths are properly chosen then we have achieved some measure
of test thoroughness. For example, pick enough paths to assure that every
source statement has been executed at least once.

o Path testing techniques are the oldest of all structural test techniques.
o Path testing is most applicable to new software for unit testing. It is a structural

technique.

o It requires complete knowledge of the program's structure.
o It is most often used by programmers to unit test their own code.
o The effectiveness of path testing rapidly deteriorates as the size of the

software aggregate under test increases.

 THE BUG ASSUMPTION:

o The bug assumption for the path testing strategies is that something has gone
wrong with the software that makes it take a different path than intended.

o As an example "GOTO X" where "GOTO Y" had been intended.
o Structured programming languages prevent many of the bugs targeted by path

testing: as a consequence the effectiveness for path testing for these
languages is reduced and for old code in COBOL, ALP, FORTRAN and Basic,
the path testing is indespensable.

 CONTROL FLOW GRAPHS:
o The control flow graph is a graphical representation of a program's control

structure. It uses the elements named process blocks, decisions, and
junctions.

o The flow graph is similar to the earlier flowchart, with which it is not to be
confused.

o Flow Graph Elements:A flow graph contains four different types of elements.
(1) Process Block (2) Decisions (3) Junctions (4) Case Statements

1. Process Block:
 A process block is a sequence of program statements

uninterrupted by either decisions or junctions.

 It is a sequence of statements such that if any one of
statement of the block is executed, then all statement
thereof are executed.

 Formally, a process block is a piece of straight line
code of one statement or hundreds of statements.

 A process has one entry and one exit. It can consists of
a single statement or instruction, a sequence of
statements or instructions, a single entry/exit
subroutine, a macro or function call, or a sequence of
these.

2. Decisions:

 A decision is a program point at which the control flow
can diverge.

 Machine language conditional branch and conditional
skip instructions are examples of decisions.

 Most of the decisions are two-way but some are three
way branches in control flow.

3. Case Statements:
 A case statement is a multi-way branch or decisions.
 Examples of case statement are a jump table in

assembly language, and the PASCAL case statement.
 From the point of view of test design, there are no

differences between Decisions and Case Statements
4. Junctions:

 A junction is a point in the program where the control
flow can merge.

 Examples of junctions are: the target of a jump or skip

instruction in ALP, a label that is a target of GOTO.

Figure 2.1: Flowgraph Elements

CONTROL FLOW GRAPHS Vs FLOWCHARTS:

A program's flow chart resembles a control flow graph.
In flow graphs, we don't show the details of what is in a process block.
In flow charts every part of the process block is drawn.
The flowchart focuses on process steps, where as the flow graph focuses on control

flow of the program.
The act of drawing a control flow graph is a useful tool that can help us clarify the

control flow and data flow issues.
NOTATIONAL EVOULTION:
The control flow graph is simplified representation of the program's structure.
The notation changes made in creation of control flow graphs:

 The process boxes weren't really needed. There is an implied
process on every line joining junctions and decisions.

 We don't need to know the specifics of the decisions, just the fact
that there is a branch.

 The specific target label names aren't important-just the fact that
they exist. So we can replace them by simple numbers.

 To understand this, we will go through an example (Figure 2.2)
written in a FORTRAN like programming language
called Programming Design Language (PDL). The program's
corresponding flowchart (Figure 2.3) and flowgraph (Figure 2.4)
were also provided below for better understanding.

 The first step in translating the program to a flowchart is shown in
Figure 2.3, where we have the typical one-for-one classical
flowchart. Note that complexity has increased, clarity has
decreased, and that we had to add auxiliary labels (LOOP, XX, and
YY), which have no actual program counterpart. In Figure 2.4 we
merged the process steps and replaced them with the single
process box. We now have a control flowgraph. But this
representation is still too busy. We simplify the notation further to
achieve Figure 2.5, where for the first time we can really see what
the control flow looks like.

Figure 2.2: Program Example (PDL)

Figure 2.3: One-to-one flowchart for
example program in Figure 2.2

Figure 2.4: Control Flowgraph for
example in Figure 2.2

Figure 2.5: Simplified Flowgraph Notation

Figure 2.6: Even Simplified Flowgraph
Notation

The final transformation is shown in Figure 2.6, where we've
dropped the node numbers to achieve an even simpler
representation. The way to work with control flowgraphs is to use
the simplest possible representation - that is, no more information
than you need to correlate back to the source program or PDL.

LINKED LIST REPRESENTATION:

Although graphical representations of flowgraphs are revealing, the details of the
control flow inside a program they are often inconvenient.

In linked list representation, each node has a name and there is an entry on the list for
each link in the flow graph. only the information pertinent to the control flow is shown.

Linked List representation of Flow Graph:

Figure 2.7: Linked List Control Flowgraph
Notation

FLOWGRAPH - PROGRAM CORRESPONDENCE:

A flow graph is a pictorial representation of a program and not the program itself, just
as a topographic map.

You cant always associate the parts of a program in a unique way with flowgraph parts
because many program structures, such as if-then-else constructs, consists of a combination
of decisions, junctions, and processes.

The translation from a flowgraph element to a statement and vice versa is not always
unique. (See Figure 2.8)

Figure 2.8: Alternative Flowgraphs for same logic
(Statement "IF (A=0) AND (B=1) THEN . . .").

An improper translation from flowgraph to code during coding can lead to bugs, and

improper translation during the test design lead to missing test cases and causes undiscovered
bugs.

FLOWGRAPH AND FLOWCHART GENERATION:

Flowcharts can be
0. Handwritten by the programmer.
1. Automatically produced by a flowcharting program based on a

mechanical analysis of the source code.
2. Semi automatically produced by a flow charting program based in

part on structural analysis of the source code and in part on
directions given by the programmer.

There are relatively few control flow graph generators.
PATH TESTING - PATHS, NODES AND LINKS:
Path:a path through a program is a sequence of instructions or statements that starts

at an entry, junction, or decision and ends at another, or possibly the same junction, decision,
or exit.

A path may go through several junctions, processes, or decisions, one or more times.
Paths consists of segments.
The segment is a link - a single process that lies between two nodes.
A path segment is succession of consecutive links that belongs to some path.
The length of path measured by the number of links in it and not by the number of the

instructions or statements executed along that path.
The name of a path is the name of the nodes along the path.
FUNDAMENTAL PATH SELECTION CRITERIA:

There are many paths between the entry and exit of a typical routine.
Every decision doubles the number of potential paths. And every loop multiplies the

number of potential paths by the number of different iteration values possible for the loop.
Defining complete testing:

0. Exercise every path from entry to exit
1. Exercise every statement or instruction at least once
2. Exercise every branch and case statement, in each direction at

least once

If prescription 1 is followed then 2 and 3 are automatically followed. But it is impractical
for most routines. It can be done for the routines that have no loops, in which it is equivalent to
2 and 3 prescriptions.

EXAMPLE:Here is the correct version.

For X negative, the output is X + A, while for X greater than or equal to zero,
the output is X + 2A. Following prescription 2 and executing every statement,
but not every branch, would not reveal the bug in the following incorrect
version:

A negative value produces the correct answer. Every statement can be
executed, but if the test cases do not force each branch to be taken, the bug
can remain hidden. The next example uses a test based on executing each
branch but does not force the execution of all statements:

The hidden loop around label 100 is not revealed by tests based on
prescription 3 alone because no test forces the execution of statement 100
and the following GOTO statement. Furthermore, label 100 is not flagged by
the compiler as an unreferenced label and the subsequent GOTO does not
refer to an undefined label.

A Static Analysis (that is, an analysis based on examining the source code or

structure) cannot determine whether a piece of code is or is not reachable. There could be
subroutine calls with parameters that are subroutine labels, or in the above example there

could be a GOTO that targeted label 100 but could never achieve a value that would send the
program to that label.

Only a Dynamic Analysis (that is, an analysis based on the code's behavior while

running - which is to say, to all intents and purposes, testing) can determine whether code is
reachable or not and therefore distinguish between the ideal structure we think we have and
the actual, buggy structure.

PATH TESTING CRITERIA:
Any testing strategy based on paths must at least both exercise every instruction and

take branches in all directions.
A set of tests that does this is not complete in an absolute sense, but it is complete in

the sense that anything less must leave something untested.
So we have explored three different testing criteria or strategies out of a potentially

infinite family of strategies.
0. Path Testing (Pinf):

 Execute all possible control flow paths through the
program: typically, this is restricted to all possible
entry/exit paths through the program.

 If we achieve this prescription, we are said to have
achieved 100% path coverage. This is the strongest
criterion in the path testing strategy family: it is
generally impossible to achieve.

1. Statement Testing (P1):

 Execute all statements in the program at least once
under some test. If we do enough tests to achieve this,
we are said to have achieved 100% statement
coverage.

 An alternate equivalent characterization is to say that
we have achieved 100% node coverage. We denote
this by C1.

 This is the weakest criterion in the family: testing less
than this for new software is unconscionable
(unprincipled or can not be accepted) and should be
criminalized.

2. Branch Testing (P2):

 Execute enough tests to assure that every branch
alternative has been exercised at least once under
some test.

 If we do enough tests to achieve this prescription, then
we have achieved 100% branch coverage.

 An alternative characterization is to say that we have
achieved 100% link coverage.

 For structured software, branch testing and therefore
branch coverage strictly includes statement coverage.

 We denote branch coverage by C2.
Commonsense and Strategies:

 Branch and statement coverage are accepted today as the
minimum mandatory testing requirement.

 The question "why not use a judicious sampling of paths?, what is
wrong with leaving some code, untested?" is ineffectual in the view
of common sense and experience since: (1.) Not testing a piece of
a code leaves a residue of bugs in the program in proportion to the
size of the untested code and the probability of bugs. (2.) The high
probability paths are always thoroughly tested if only to
demonstrate that the system works properly.

 Which paths to be tested? You must pick enough paths to
achieve C1+C2. The question of what is the fewest number of such
paths is interesting to the designer of test tools that help automate
the path testing, but it is not crucial to the pragmatic (practical)
design of tests. It is better to make many simple paths than a few
complicated paths.

 Path Selection Example:

Figure 2.9: An example flowgraph to
explain path selection

 Practical Suggestions in Path Testing:

0. Draw the control flow graph on a single sheet of paper.
1. Make several copies - as many as you will need for

coverage (C1+C2) and several more.
2. Use a yellow highlighting marker to trace paths. Copy

the paths onto a master sheets.
3. Continue tracing paths until all lines on the master

sheet are covered, indicating that you appear to have
achieved C1+C2.

4. As you trace the paths, create a table that shows the
paths, the coverage status of each process, and each
decision.

5. The above paths lead to the following table considering
Figure 2.9:

LOOPS:

6. After you have traced a a covering path set on the
master sheet and filled in the table for every path,
check the following:

1. Does every decision have a YES and a NO
in its column? (C2)

2. Has every case of all case statements been
marked? (C2)

3. Is every three - way branch (less, equal,
greater) covered? (C2)

4. Is every link (process) covered at least
once? (C1)

7. Revised Path Selection Rules:
 Pick the simplest, functionally sensible

entry/exit path.
 Pick additional paths as small variation from

previous paths. Pick paths that do not have
loops rather than paths that do. Favor short
paths that make sense over paths that
don't.

 Pick additional paths that have no obvious
functional meaning only if it's necessary to
provide coverage.

 Be comfortable with your chosen paths.
Play your hunches (guesses) and give your
intuition free reign as long as you achieve
C1+C2.

 Don't follow rules slavishly (blindly) - except
for coverage.

 Cases for a single loop:A Single loop can be covered with two
cases: Looping and Not looping. But, experience shows that many
loop-related bugs are not discovered by C1+C2. Bugs hide
themselves in corners and congregate at boundaries - in the cases
of loops, at or around the minimum or maximum number of times
the loop can be iterated. The minimum number of iterations is often
zero, but it need not be.
CASE 1: Single loop, Zero minimum, N maximum, No excluded
values

0. Try bypassing the loop (zero iterations). If you can't,
you either have a bug, or zero is not the minimum and
you have the wrong case.

1. Could the loop-control variable be negative? Could it
appear to specify a negative number of iterations?
What happens to such a value?

2. One pass through the loop.
3. Two passes through the loop.
4. A typical number of iterations, unless covered by a

previous test.
5. One less than the maximum number of iterations.
6. The maximum number of iterations.
7. Attempt one more than the maximum number of

iterations. What prevents the loop-control variable from
having this value? What will happen with this value if it
is forced?

CASE 2: Single loop, Non-zero minimum, No excluded values

8. Try one less than the expected minimum. What

happens if the loop control variable's value is less than

the minimum? What prevents the value from being less
than the minimum?

9. The minimum number of iterations.
10. One more than the minimum number of iterations.
11. Once, unless covered by a previous test.
12. Twice, unless covered by a previous test.
13. A typical value.

14. One less than the maximum value.
15. The maximum number of iterations.
16. Attempt one more than the maximum number of

iterations.

CASE 3: Single loops with excluded values

 Treat single loops with excluded values as two sets of

tests consisting of loops without excluded values, such
as case 1 and 2 above.

 Example, the total range of the loop control variable
was 1 to 20, but that values 7,8,9,10 were excluded.
The two sets of tests are 1-6 and 11-20.

 The test cases to attempt would be 0,1,2,4,6,7 for the
first range and 10,11,15,19,20,21 for the second range.

 Kinds of Loops:There are only three kinds of loops with respect to

path testing:
 Nested Loops:

 The number of tests to be performed on
nested loops will be the exponent of the
tests performed on single loops.

 As we cannot always afford to test all
combinations of nested loops' iterations
values. Here's a tactic used to discard some
of these values:

1. Start at the inner most loop. Set
all the outer loops to their
minimum values.

2. Test the minimum, minimum+1,
typical, maximum-1 , and
maximum for the innermost
loop, while holding the outer
loops at their minimum iteration
parameter values. Expand the
tests as required for out of range
and excluded values.

3. If you've done the outmost loop,
GOTO step 5, else move out
one loop and set it up as in step
2 with all other loops set to
typical values.

4. Continue outward in this manner
until all loops have been
covered.

5. Do all the cases for all loops in
the nest simultaneously.

 Concatenated Loops:
 Concatenated loops fall between single and

nested loops with respect to test cases. Two
loops are concatenated if it's possible to
reach one after exiting the other while still
on a path from entrance to exit.

 If the loops cannot be on the same path,
then they are not concatenated and can be
treated as individual loops.

 Horrible Loops:
 A horrible loop is a combination of nested

loops, the use of code that jumps into and
out of loops, intersecting loops, hidden
loops, and cross connected loops.

 Makes iteration value selection for test
cases an awesome and ugly task, which is
another reason such structures should be
avoided.

Figure 2.10: Example of Loop types

 Loop Testing TIme:

 Any kind of loop can lead to long testing time,
especially if all the extreme value cases are to
attempted (Max-1, Max, Max+1).

 This situation is obviously worse for nested and
dependent concatenated loops.

 Consider nested loops in which testing the combination
of extreme values lead to long test times. Several
options to deal with:

 Prove that the combined extreme cases are
hypothetically possible, they are not
possible in the real world

 Put in limits or checks that prevent the
combined extreme cases. Then you have to
test the software that implements such
safety measures.

PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS:

PREDICATE: The logical function evaluated at a decision is called Predicate. The
direction taken at a decision depends on the value of decision variable. Some examples are:
A>0, x+y>=90.......

PATH PREDICATE: A predicate associated with a path is called a Path Predicate. For

example, "x is greater than zero", "x+y>=90", "w is either negative or equal to 10 is true" is a
sequence of predicates whose truth values will cause the routine to take a specific path.

MULTIWAY BRANCHES:
 The path taken through a multiway branch such as a computed

GOTO's, case statement, or jump tables cannot be directly
expressed in TRUE/FALSE terms.

 Although, it is possible to describe such alternatives by using multi
valued logic, an expedient (practical approach) is to express
multiway branches as an equivalent set of if..then..else statements.

 For example a three way case statement can be written as: If
case=1 DO A1 ELSE (IF Case=2 DO A2 ELSE DO A3
ENDIF)ENDIF.

INPUTS:

 In testing, the word input is not restricted to direct inputs, such as
variables in a subroutine call, but includes all data objects
referenced by the routine whose values are fixed prior to entering
it.

 For example, inputs in a calling sequence, objects in a data
structure, values left in registers, or any combination of object
types.

 The input for a particular test is mapped as a one dimensional
array called as an Input Vector.

PREDICATE INTERPRETATION:

 The simplest predicate depends only on input variables.
 For example if x1,x2 are inputs, the predicate might be x1+x2>=7,

given the values of x1 and x2 the direction taken through the
decision is based on the predicate is determined at input time and
does not depend on processing.

 Another example, assume a predicate x1+y>=0 that along a path
prior to reaching this predicate we had the assignement statement
y=x2+7. although our predicate depends on processing, we can
substitute the symbolic expression for y to obtain an equivalent
predicate x1+x2+7>=0.

 The act of symbolic substitution of operations along the path in
order to express the predicate solely in terms of the input vector is
called predicate interpretation.

 Some times the interpretation may depend on the path; for
example,

 INPUT X

 ON X GOTO A, B, C, ...

 A: Z := 7 @ GOTO HEM

 B: Z := -7 @ GOTO HEM

 C: Z := 0 @ GOTO HEM

 HEM: DO SOMETHING

 HEN: IF Y + Z > 0 GOTO ELL ELSE GOTO EMM

The predicate interpretation at HEN depends on the path we took
through the first multiway branch. It yields for the three cases
respectively, if Y+7>0, Y-7>0, Y>0.

 The path predicates are the specific form of the predicates of the

decisions along the selected path after interpretation.
INDEPENDENCE OF VARIABLES AND PREDICATES:

 The path predicates take on truth values based on the values of
input variables, either directly or indirectly.

 If a variable's value does not change as a result of processing, that
variable is independent of the processing.

 If the variable's value can change as a result of the processing, the
variable is process dependent.

 A predicate whose truth value can change as a result of the
processing is said to be process dependent and one whose truth
value does not change as a result of the processing is process
independent.

 Process dependence of a predicate does not always follow from
dependence of the input variables on which that predicate is
based.

CORRELATION OF VARIABLES AND PREDICATES:

 Two variables are correlated if every combination of their values
cannot be independently specified.

 Variables whose values can be specified independently without
restriction are called uncorrelated.

 A pair of predicates whose outcomes depend on one or more
variables in common are said to be correlated predicates.
For example, the predicate X==Y is followed by another predicate
X+Y == 8. If we select X and Y values to satisfy the first predicate,
we might have forced the 2nd predicate's truth value to change.

 Every path through a routine is achievable only if all the predicates
in that routine are uncorrelated.

PATH PREDICATE EXPRESSIONS:
 A path predicate expression is a set of boolean expressions, all of

which must be satisfied to achieve the selected path.
 Example:

 X1+3X2+17>=0

 X3=17

 X4-X1>=14X2

 Any set of input values that satisfy all of the conditions of the path
predicate expression will force the routine to the path.

 Some times a predicate can have an OR in it.
 Example:

A: X5 > 0 E: X6 < 0
B: X1 + 3X2 + 17 >= 0 B: X1 + 3X2 + 17 >= 0
C: X3 = 17
D: X4 - X1 >= 14X2

C: X3 = 17
D: X4 - X1 >= 14X2

 Boolean algebra notation to denote the boolean expression:

ABCD+EBCD=(A+E)BCD

PREDICATE COVERAGE:
 Compound Predicate: Predicates of the form A OR B, A AND B

and more complicated boolean expressions are called as
compound predicates.

 Some times even a simple predicate becomes compound after
interpretation. Example: the predicate if (x=17) whose opposite
branch is if x.NE.17 which is equivalent to x>17 . Or. X<17.

 Predicate coverage is being the achieving of all possible
combinations of truth values corresponding to the selected path
have been explored under some test.

 As achieving the desired direction at a given decision could still
hide bugs in the associated predicates.

TESTING BLINDNESS:
 Testing Blindness is a pathological (harmful) situation in which the

desired path is achieved for the wrong reason.
 There are three types of Testing Blindness:

0. Assignment Blindness:

 Assignment blindness occurs when the
buggy predicate appears to work correctly
because the specific value chosen for an
assignment statement works with both the
correct and incorrect predicate.

 For Example:

Correct Buggy

X = 7
........

if Y > 0 then ...

X = 7
........

if X+Y > 0 then ...

 If the test case sets Y=1 the desired path is

taken in either case, but there is still a bug.
1. Equality Blindness:

 Equality blindness occurs when the path
selected by a prior predicate results in a
value that works both for the correct and
buggy predicate.

 For Example:

Correct Buggy

if Y = 2 then
........

if Y = 2 then
........

 The first predicate if y=2 forces the rest of
the path, so that for any positive value of x.
the path taken at the second predicate will
be the same for the correct and buggy
version.

2. Self Blindness:
 Self blindness occurs when the buggy

predicate is a multiple of the correct
predicate and as a result is indistinguishable
along that path.

 For Example:

Correct Buggy

X = A
........

if X-1 > 0 then ...

X = A
........

if X+A-2 > 0 then ...

 The assignment (x=a) makes the predicates

multiples of each other, so the direction
taken is the same for the correct and buggy
version.

PATH SENSITIZING:

REVIEW: ACHIEVABLE AND UNACHIEVABLE PATHS:

 We want to select and test enough paths to achieve a satisfactory
notion of test completeness such as C1+C2.

 Extract the programs control flowgraph and select a set of tentative
covering paths.

 For any path in that set, interpret the predicates along the path as
needed to express them in terms of the input vector. In general
individual predicates are compound or may become compound as
a result of interpretation.

 Trace the path through, multiplying the individual compound
predicates to achieve a boolean expression such as

(A+BC) (D+E) (FGH) (IJ) (K) (l) (L).

 Multiply out the expression to achieve a sum of products form:

ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJ
KL

 Each product term denotes a set of inequalities that if solved will

yield an input vector that will drive the routine along the designated
path.

 Solve any one of the inequality sets for the chosen path and you
have found a set of input values for the path.

 If you can find a solution, then the path is achievable.
 If you cant find a solution to any of the sets of inequalities, the path

is un achievable.

if X+Y > 3 then ... if X > 1 then ...

 The act of finding a set of solutions to the path predicate
expression is called PATH SENSITIZATION.

HEURISTIC PROCEDURES FOR SENSITIZING PATHS:

 This is a workable approach, instead of selecting the paths without
considering how to sensitize, attempt to choose a covering path set
that is easy to sensitize and pick hard to sensitize paths only as
you must to achieve coverage.

 Identify all variables that affect the decision.
 Classify the predicates as dependent or independent.
 Start the path selection with un correlated, independent predicates.
 If coverage has not been achieved using independent uncorrelated

predicates, extend the path set using correlated predicates.
 If coverage has not been achieved extend the cases to those that

involve dependent predicates.

 Last, use correlated, dependent predicates.

PATH INSTRUMENTATION:

PATH INSTRUMENTATION:

 Path instrumentation is what we have to do to confirm that the
outcome was achieved by the intended path.

 Co-incidental Correctness: The coincidental correctness stands

for achieving the desired outcome for wrong reason.

Figure 2.11: Coincidental Correctness
The above figure is an example of a routine that, for the

(unfortunately) chosen input value (X = 16), yields the same outcome
(Y = 2) no matter which case we select. Therefore, the tests chosen
this way will not tell us whether we have achieved coverage. For
example, the five cases could be totally jumbled and still the outcome
would be the same. Path Instrumentation is what we have to do to
confirm that the outcome was achieved by the intended path.

 The types of instrumentation methods include:
0. Interpretive Trace Program:

 An interpretive trace program is one that
executes every statement in order and

records the intermediate values of all
calculations, the statement labels traversed
etc.

 If we run the tested routine under a trace,
then we have all the information we need to
confirm the outcome and, furthermore, to
confirm that it was achieved by the intended
path.

 The trouble with traces is that they give us
far more information than we need. In fact,
the typical trace program provides so much
information that confirming the path from its
massive output dump is more work than
simulating the computer by hand to confirm
the path.

1. Traversal Marker or Link Marker:

 A simple and effective form of
instrumentation is called a traversal marker
or link marker.

 Name every link by a lower case letter.
 Instrument the links so that the link's name

is recorded when the link is executed.
 The succession of letters produced in going

from the routine's entry to its exit should, if
there are no bugs, exactly correspond to the
path name.

2. Figure 2.12: Single Link
Marker Instrumentation

 Why Single Link Markers aren't

enough: Unfortunately, a single link marker

may not do the trick because links can be

chewed by open bugs.

3. Figure 2.13: Why
Single Link
Markers aren't

enough.
4. We intended to traverse the ikm path, but

because of a rampaging GOTO in the
middle of the m link, we go to process B.
If coincidental correctness is against us,
the outcomes will be the same and we
won't know about the bug.

5. Two Link Marker Method:

 The solution to the problem of single
link marker method is to implement
two markers per link: one at the
beginning of each link and on at the
end.

 The two link markers now specify the
path name and confirm both the
beginning and end of the link.

6. Figure 2.14: Double

Link Marker
Instrumentation.

7. Link Counter: A less disruptive (and less

informative) instrumentation method is based on
counters. Instead of a unique link name to be
pushed into a string when the link is traversed, we
simply increment a link counter. We now confirm
that the path length is as expected. The same
problem that led us to double link markers also
leads us to double link counters.

UNIT-2(PART 2)

TRANSACTION FLOW TESTING AND DATA FLOW TESTING:

This unit gives an indepth overview of two forms of functional or system testing namely

Transaction Flow Testing and Data Flow Testing.

At the end of this unit, the student will be able to:

 Understand the concept of transaction flow testing and data flow testing.

 Visualize the transaction flow and data flow in a software system.

 Understand the need and appreciate the usage of the two testing methods.

 Identify the complications in a transaction flow testing method and anomalies in data flow
testing.

 Interpret the data flow anomaly state graphs and control flow grpahs and represent the
state of the data objetcs.

 Understand the limitations of Static analysis in data flow testing.

 Compare and analyze various strategies of data flow testing.

TRANSACTION FLOWS:

 INTRODUCTION:
o A transaction is a unit of work seen from a system user's point of view.
o A transaction consists of a sequence of operations, some of which are

performed by a system, persons or devices that are outside of the system.
o Transaction begin with Birth-that is they are created as a result of some

external act.
o At the conclusion of the transaction's processing, the transaction is no longer

in the system.
o Example of a transaction: A transaction for an online information retrieval

system might consist of the following steps or tasks:
 Accept input (tentative birth)
 Validate input (birth)
 Transmit acknowledgement to requester
 Do input processing
 Search file

 Request directions from user
 Accept input
 Validate input
 Process request
 Update file
 Transmit output
 Record transaction in log and clean up (death)

 TRANSACTION FLOW GRAPHS:
o Transaction flows are introduced as a representation of a system's processing.
o The methods that were applied to control flow graphs are then used for

functional testing.
o Transaction flows and transaction flow testing are to the independent system

tester what control flows are path testing are to the programmer.
o The transaction flow graph is to create a behavioral model of the program that

leads to functional testing.
o The transaction flowgraph is a model of the structure of the system's behavior

(functionality).

o An example of a Transaction Flow is as follows:

Figure 3.1: An Example of a Transaction Flow

 USAGE:
o Transaction flows are indispensable for specifying requirements of complicated

systems, especially online systems.
o A big system such as an air traffic control or airline reservation system, has not

hundreds, but thousands of different transaction flows.
o The flows are represented by relatively simple flowgraphs, many of which have

a single straight-through path.
o Loops are infrequent compared to control flowgraphs.
o The most common loop is used to request a retry after user input errors. An

ATM system, for example, allows the user to try, say three times, and will take
the card away the fourth time.

 COMPLICATIONS:
o In simple cases, the transactions have a unique identity from the time they're

created to the time they're completed.
o In many systems the transactions can give birth to others, and transactions

can also merge.
o Births:There are three different possible interpretations of the decision

symbol, or nodes with two or more out links. It can be a Decision, Biosis or a
Mitosis.

1. Decision:Here the transaction will take one alternative or the other alternative but

not both. (See Figure 3.2 (a))
2. Biosis:Here the incoming transaction gives birth to a new transaction, and both
transaction continue on their separate paths, and the parent retains it identity. (See Figure
3.2 (b))
3. Mitosis:Here the parent transaction is destroyed and two new transactions are

created.(See Figure 3.2 (c))

Figure 3.2: Nodes with multiple outlinks

Mergers:Transaction flow junction points are potentially as troublesome as transaction

flow splits. There are three types of junctions: (1) Ordinary Junction (2) Absorption (3)
Conjugation
0. Ordinary Junction: An ordinary junction which is similar to the junction in a control

flow graph. A transaction can arrive either on one link or the other. (See Figure 3.3 (a))
1. Absorption: In absorption case, the predator transaction absorbs prey transaction.
The prey gone but the predator retains its identity. (See Figure 3.3 (b))
2. Conjugation: In conjugation case, the two parent transactions merge to form a

new daughter. In keeping with the biological flavor this case is called as conjugation.(See

Figure 3.3 (c))

Figure 3.3: Transaction Flow Junctions and

Mergers

We have no problem with ordinary decisions and junctions. Births, absorptions, and
conjugations are as problematic for the software designer as they are for the software modeler
and the test designer; as a consequence, such points have more than their share of bugs. The
common problems are: lost daughters, wrongful deaths, and illegitimate births.

TRANSACTION FLOW TESTING TECHNIQUES:

 GET THE TRANSACTIONS FLOWS:

o Complicated systems that process a lot of different, complicated transactions
should have explicit representations of the transactions flows, or the
equivalent.

o Transaction flows are like control flow graphs, and consequently we should
expect to have them in increasing levels of detail.

o The system's design documentation should contain an overview section that
details the main transaction flows.

o Detailed transaction flows are a mandatory pre requisite to the rational design
of a system's functional test.

 INSPECTIONS, REVIEWS AND WALKTHROUGHS:
o Transaction flows are natural agenda for system reviews or inspections.
o In conducting the walkthroughs, you should:

 Discuss enough transaction types to account for 98%-99% of the
transaction the system is expected to process.

 Discuss paths through flows in functional rather than technical
terms.

 Ask the designers to relate every flow to the specification and to
show how that transaction, directly or indirectly, follows from the
requirements.

o Make transaction flow testing the corner stone of system functional testing just
as path testing is the corner stone of unit testing.

o Select additional flow paths for loops, extreme values, and domain boundaries.
o Design more test cases to validate all births and deaths.
o Publish and distribute the selected test paths through the transaction flows as

early as possible so that they will exert the maximum beneficial effect on the
project.

o

 PATH SELECTION:
o Select a set of covering paths (c1+c2) using the analogous criteria you used

for structural path testing.
o Select a covering set of paths based on functionally sensible transactions as

you would for control flow graphs.
o Try to find the most tortuous, longest, strangest path from the entry to the exit

of the transaction flow.

 PATH SENSITIZATION:
o Most of the normal paths are very easy to sensitize-80% - 95% transaction

flow coverage (c1+c2) is usually easy to achieve.

o The remaining small percentage is often very difficult.
o Sensitization is the act of defining the transaction. If there are sensitization

problems on the easy paths, then bet on either a bug in transaction flows or a
design bug.

 PATH INSTRUMENTATION:
o Instrumentation plays a bigger role in transaction flow testing than in unit path

testing.
o The information of the path taken for a given transaction must be kept with that

transaction and can be recorded by a central transaction dispatcher or by the
individual processing modules.

o In some systems, such traces are provided by the operating systems or a
running log.

BASICS OF DATA FLOW TESTING:

 DATA FLOW TESTING:

o Data flow testing is the name given to a family of test strategies based on
selecting paths through the program's control flow in order to explore
sequences of events related to the status of data objects.

o For example, pick enough paths to assure that every data object has been
initialized prior to use or that all defined objects have been used for something.

o Motivation:

it is our belief that, just as one would not feel confident about a
program without executing every statement in it as part of some
test, one should not feel confident about a program without
having seen the effect of using the value produced by each and
every computation.

 DATA FLOW MACHINES:

o There are two types of data flow machines with different architectures. (1) Von
Neumann machnes (2) Multi-instruction, multi-data machines (MIMD).

o Von Neumann Machine Architecture:
 Most computers today are von-neumann machines.
 This architecture features interchangeable storage of instructions

and data in the same memory units.
 The Von Neumann machine Architecture executes one instruction

at a time in the following, micro instruction sequence:
1. Fetch instruction from memory
2. Interpret instruction
3. Fetch operands
4. Process or Execute
5. Store result
6. Increment program counter
7. GOTO 1

o Multi-instruction, Multi-data machines (MIMD) Architecture:
 These machines can fetch several instructions and objects in

parallel.
 They can also do arithmetic and logical operations simultaneously

on different data objects.
 The decision of how to sequence them depends on the compiler.

 BUG ASSUMPTION:
o The bug assumption for data-flow testing strategies is that control flow is

generally correct and that something has gone wrong with the software so that
data objects are not available when they should be, or silly things are being
done to data objects.

o Also, if there is a control-flow problem, we expect it to have symptoms that can
be detected by data-flow analysis.

o Although we'll be doing data-flow testing, we won't be using data flowgraphs
as such. Rather, we'll use an ordinary control flowgraph annotated to show
what happens to the data objects of interest at the moment.

 DATA FLOW GRAPHS:
o The data flow graph is a graph consisting of nodes and directed links.

Figure 3.4: Example of a data flow graph

o We will use an control graph to show what happens to data objects of interest

at that moment.
o Our objective is to expose deviations between the data flows we have and the

data flows we want.
o Data Object State and Usage:

 Data Objects can be created, killed and used.
 They can be used in two distinct ways: (1) In a Calculation (2) As a

part of a Control Flow Predicate.
 The following symbols denote these possibilities:

1. Defined: d - defined, created, initialized etc
2. Killed or undefined: k - killed, undefined, released etc
3. Usage: u - used for something (c - used in

Calculations, p - used in a predicate)
 1. Defined (d):

 An object is defined explicitly when it appears in a data
declaration.

 Or implicitly when it appears on the left hand side of the
assignment.

 It is also to be used to mean that a file has been
opened.

 A dynamically allocated object has been allocated.
 Something is pushed on to the stack.
 A record written.

2. Killed or Undefined (k):
 An object is killed on undefined when it is released or

otherwise made unavailable.

3. Usage

(u):

 When its contents are no longer known with certitude
(with aboslute certainity / perfectness).

 Release of dynamically allocated objects back to the
availability pool.

 Return of records.
 The old top of the stack after it is popped.
 An assignment statement can kill and redefine

immediately. For example, if A had been previously
defined and we do a new assignment such as A : = 17,
we have killed A's previous value and redefined A

 A variable is used for computation (c) when it appears

on the right hand side of an assignment statement.
 A file record is read or written.
 It is used in a Predicate (p) when it appears directly in a

predicate.

DATA FLOW ANOMALIES:
An anomaly is denoted by a two-character sequence of actions.

For example, ku means that the object is killed and then used, where as dd means that
the object is defined twice without an intervening usage.

What is an anomaly is depend on the application.
There are nine possible two-letter combinations for d, k and u. some are bugs, some

are suspicious, and some are okay.
0. dd :- probably harmless but suspicious. Why define the object twice without an

intervening usage?
1. dk :- probably a bug. Why define the object without using it?
2. du :- the normal case. The object is defined and then used.
3. kd :- normal situation. An object is killed and then redefined.
4. kk :- harmless but probably buggy. Did you want to be sure it was really killed?
5. ku :- a bug. the object doesnot exist.
6. ud :- usually not a bug because the language permits reassignment at almost any

time.
7. uk :- normal situation.
8. uu :- normal situation.

In addition to the two letter situations, there are six single letter situations.
We will use a leading dash to mean that nothing of interest (d,k,u) occurs prior to the

action noted along the entry-exit path of interest.
A trailing dash to mean that nothing happens after the point of interest to the exit.

They possible anomalies are:
0. -k :- possibly anomalous because from the entrance to this point on the path, the

variable had not been defined. We are killing a variable that does not exist.
1. -d :- okay. This is just the first definition along this path.
2. -u :- possibly anomalous. Not anomalous if the variable is global and has been

previously defined.
3. k- :- not anomalous. The last thing done on this path was to kill the variable.
4. d- :- possibly anomalous. The variable was defined and not used on this path. But

this could be a global definition.
5. u- :- not anomalous. The variable was used but not killed on this path. Although this

sequence is not anomalous, it signals a frequent kind of bug. If d and k mean dynamic
storage allocation and return respectively, this could be an instance in which a dynamically
allocated object was not returned to the pool after use.

DATA FLOW ANOMALY STATE GRAPH:
Data flow anomaly model prescribes that an object can be in one of four distinct states:

0. K :- undefined, previously killed, doesnot exist
1. D :- defined but not yet used for anything
2. U :- has been used for computation or in predicate
3. A :- anomalous

These capital letters (K,D,U,A) denote the state of the variable and should not be
confused with the program action, denoted by lower case letters.

Unforgiving Data - Flow Anomaly Flow Graph:Unforgiving model, in which once a

variable becomes anomalous it can never return to a state of grace.

Figure 3.5: Unforgiving Data Flow Anomaly State Graph

Assume that the variable starts in the K state - that is, it has not been defined or

does not exist. If an attempt is made to use it or to kill it (e.g., say that we're
talking about opening, closing, and using files and that 'killing' means closing),
the object's state becomes anomalous (state A) and, once it is anomalous, no
action can return the variable to a working state. If it is defined (d), it goes into
the D, or defined but not yet used, state. If it has been defined (D) and
redefined (d) or killed without use (k), it becomes anomalous, while usage (u)
brings it to the U state. If in U, redefinition (d) brings it to D, u keeps it in U, and
k kills it.

Forgiving Data - Flow Anomaly Flow Graph:Forgiving model is an alternate model

where redemption (recover) from the anomalous state is possible.

Figure 3.6: Forgiving Data Flow Anomaly State Graph

This graph has three normal and three anomalous states and he considers the kk
sequence not to be anomalous. The difference between this state graph and
Figure 3.5 is that redemption is possible. A proper action from any of the three
anomalous states returns the variable to a useful working state.

The point of showing you this alternative anomaly state graph is to demonstrate

that the specifics of an anomaly depends on such things as language,
application, context, or even your frame of mind. In principle, you must create a
new definition of data flow anomaly (e.g., a new state graph) in each situation.
You must at least verify that the anomaly definition behind the theory or
imbedded in a data flow anomaly test tool is appropriate to your situation.

STATIC Vs DYNAMIC ANOMALY DETECTION:
Static analysis is analysis done on source code without actually executing it. For

example: source code syntax error detection is the static analysis result.
Dynamic analysis is done on the fly as the program is being executed and is based on

intermediate values that result from the program's execution. For example: a division by zero
warning is the dynamic result.

If a problem, such as a data flow anomaly, can be detected by static analysis methods,
then it doesnot belongs in testing - it belongs in the language processor.

There is actually a lot more static analysis for data flow analysis for data flow
anomalies going on in current language processors.

For example, language processors which force variable declarations can detect (-u)
and (ku) anomalies.

But still there are many things for which current notions of static analysis are
INADEQUATE.

Why Static Analysis isn't enough? There are many things for which current notions

of static analysis are inadequate. They are:
 Dead Variables:Although it is often possible to prove that a

variable is dead or alive at a given point in the program, the
general problem is unsolvable.

 Arrays:Arrays are problematic in that the array is defined or killed
as a single object, but reference is to specific locations within the
array. Array pointers are usually dynamically calculated, so there's
no way to do a static analysis to validate the pointer value. In many
languages, dynamically allocated arrays contain garbage unless
explicitly initialized and therefore, -u anomalies are possible.

 Records and Pointers:The array problem and the difficulty with
pointers is a special case of multipart data structures. We have the

same problem with records and the pointers to them. Also, in many
applications we create files and their names dynamically and
there's no way to determine, without execution, whether such
objects are in the proper state on a given path or, for that matter,
whether they exist at all.

 Dynamic Subroutine and Function Names in a Call:subroutine
or function name is a dynamic variable in a call. What is passed, or
a combination of subroutine names and data objects, is
constructed on a specific path. There's no way, without executing
the path, to determine whether the call is correct or not.

 False Anomalies:Anomalies are specific to paths. Even a "clear
bug" such as ku may not be a bug if the path along which the
anomaly exist is unachievable. Such "anomalies" are false
anomalies. Unfortunately, the problem of determining whether a
path is or is not achievable is unsolvable.

 Recoverable Anomalies and Alternate State Graphs:What
constitutes an anomaly depends on context, application, and
semantics. How does the compiler know which model I have in
mind? It can't because the definition of "anomaly" is not
fundamental. The language processor must have a built-in
anomaly definition with which you may or may not (with good
reason) agree.

 Concurrency, Interrupts, System Issues:As soon as we get
away from the simple single-task uniprocessor environment and
start thinking in terms of systems, most anomaly issues become
vastly more complicated. How often do we define or create data
objects at an interrupt level so that they can be processed by a
lower-priority routine? Interrupts can make the "correct" anomalous
and the "anomalous" correct. True concurrency (as in an MIMD
machine) and pseudoconcurrency (as in multiprocessing) systems
can do the same to us. Much of integration and system testing is
aimed at detecting data-flow anomalies that cannot be detected in
the context of a single routine.

Although static analysis methods have limits, they are worth using and a continuing
trend in language processor design has been better static analysis methods, especially for data
flow anomaly detection. That's good because it means there's less for us to do as testers and
we have far too much to do as it is.

DATA FLOW MODEL:
The data flow model is based on the program's control flow graph - Don't confuse that

with the program's data flowgraph..
Here we annotate each link with symbols (for example, d, k, u, c, p) or sequences of

symbols (for example, dd, du, ddd) that denote the sequence of data operations on that link
with respect to the variable of interest. Such annotations are called link weights.

The control flow graph structure is same for every variable: it is the weights that
change.

Components of the model:
0. To every statement there is a node, whose name is unique. Every

node has at least one outlink and at least one inlink except for exit
nodes and entry nodes.

1. Exit nodes are dummy nodes placed at the outgoing arrowheads of
exit statements (e.g., END, RETURN), to complete the graph.
Similarly, entry nodes are dummy nodes placed at entry
statements (e.g., BEGIN) for the same reason.

2. The outlink of simple statements (statements with only one outlink)
are weighted by the proper sequence of data-flow actions for that
statement. Note that the sequence can consist of more than one
letter. For example, the assignment statement A:= A + B in most
languages is weighted by cd or possibly ckd for variable A.
Languages that permit multiple simultaneous assignments and/or
compound statements can have anomalies within the statement.
The sequence must correspond to the order in which the object
code will be executed for that variable.

3. Predicate nodes (e.g., IF-THEN-ELSE, DO WHILE, CASE) are
weighted with the p - use(s) on every outlink, appropriate to that
outlink.

4. Every sequence of simple statements (e.g., a sequence of nodes
with one inlink and one outlink) can be replaced by a pair of nodes
that has, as weights on the link between them, the concatenation of
link weights.

5. If there are several data-flow actions on a given link for a given
variable, then the weight of the link is denoted by the sequence of
actions on that link for that variable.

6. Conversely, a link with several data-flow actions on it can be
replaced by a succession of equivalent links, each of which has at
most one data-flow action for any variable.

Let us consider the example:

Figure 3.7: Program Example (PDL)

Figure 3.8: Unannotated flowgraph for example
program in Figure 3.7

Figure 3.9: Control flowgraph annotated for X and
Y data flows.

Figure 3.10: Control flowgraph annotated for Z
data flow.

Figure 3.11: Control flowgraph annotated for V data
flow.

STRATEGIES OF DATA FLOW TESTING:

 INTRODUCTION:

o Data Flow Testing Strategies are structural strategies.
o In contrast to the path-testing strategies, data-flow strategies take into account

what happens to data objects on the links in addition to the raw connectivity of
the graph.

o In other words, data flow strategies require data-flow link weights (d,k,u,c,p).
o Data Flow Testing Strategies are based on selecting test path segments (also

called sub paths) that satisfy some characteristic of data flows for all data
objects.

o For example, all subpaths that contain a d (or u, k, du, dk).
o A strategy X is stronger than another strategy Y if all test cases produced

under Y are included in those produced under X - conversely for weaker.

 TERMINOLOGY:
1. Definition-Clear Path Segment, with respect to variable X, is a connected sequence
of links such that X is (possibly) defined on the first link and not redefined or killed on any
subsequent link of that path segment. ll paths in Figure 3.9 are definition clear because
variables X and Y are defined only on the first link (1,3) and not thereafter. In Figure 3.10, we
have a more complicated situation. The following path segments are definition-clear: (1,3,4),
(1,3,5), (5,6,7,4), (7,8,9,6,7), (7,8,9,10), (7,8,10), (7,8,10,11). Subpath (1,3,4,5) is not definition-
clear because the variable is defined on (1,3) and again on (4,5). For practice, try finding all the
definition-clear subpaths for this routine (i.e., for all variables).
2. Loop-Free Path Segment is a path segment for which every node in it is visited

atmost once. For Example, path (4,5,6,7,8,10) in Figure 3.10 is loop free, but path
(10,11,4,5,6,7,8,10,11,12) is not because nodes 10 and 11 are each visited twice.
3. Simple path segment is a path segment in which at most one node is visited twice.
For example, in Figure 3.10, (7,4,5,6,7) is a simple path segment. A simple path segment is
either loop-free or if there is a loop, only one node is involved.
4. A du path from node i to k is a path segment such that if the last link has a

computational use of X, then the path is simple and definition-clear; if the penultimate (last but
one) node is j - that is, the path is (i,p,q,...,r,s,t,j,k) and link (j,k) has a predicate use - then the
path from i to j is both loop-free and definition-clear.

STRATEGIES: The structural test strategies discussed below are based on the program's
control flowgraph. They differ in the extent to which predicate uses and/or computational uses of
variables are included in the test set. Various types of data flow testing strategies in decreasing
order of their effectiveness are:

0. All - du Paths (ADUP): The all-du-paths (ADUP) strategy is the strongest data-flow
testing strategy discussed here. It requires that every du path from every definition of every
variable to every use of that definition be exercised under some test.

For variable X and Y:In Figure 3.9, because variables X and Y are used only on link (1,3), any test
that starts at the entry satisfies this criterion (for variables X and Y, but not for all variables as
 required by the strategy).

For variable Z: The situation for variable Z (Figure 3.10) is more complicated because the variable
is redefined in many places. For the definition on link (1,3) we must exercise paths that include
subpaths (1,3,4) and (1,3,5). The definition on link (4,5) is covered by any path that includes
(5,6), such as subpath (1,3,4,5,6, ...). The (5,6) definition requires paths that include subpaths
 (5,6,7,4) and (5,6,7,8).

For variable V: Variable V (Figure 3.11) is defined only once on link (1,3). Because V has a
predicate use at node 12 and the subsequent path to the end must be forced for both
directions at node 12, the all-du-paths strategy for this variable requires that we exercise all
loop-free entry/exit paths and at least one path that includes the loop caused by (11,4). Note
that we must test paths that include both subpaths (3,4,5) and (3,5) even though neither of
these has V definitions. They must be included because they provide alternate du paths to the
V use on link (5,6). Although (7,4) is not used in the test set for variable V, it will be included in
the test set that covers the predicate uses of array variable V() and U.

The all-du-paths strategy is a strong criterion, but it does not take as many tests as it might seem at

first because any one test simultaneously satisfies the criterion for several definitions and uses
of several different variables.

1. All Uses Startegy (AU):The all uses strategy is that at least one definition clear path
from every definition of every variable to every use of that definition be exercised under some
test. Just as we reduced our ambitions by stepping down from all paths (P) to branch coverage
(C2), say, we can reduce the number of test cases by asking that the test set should include at
least one path segment from every definition to every use that can be reached by that
definition.

For variable V: In Figure 3.11, ADUP requires that we include subpaths (3,4,5) and (3,5) in some
test because subsequent uses of V, such as on link (5,6), can be reached by either alternative.
In AU either (3,4,5) or (3,5) can be used to start paths, but we don't have to use both.
Similarly, we can skip the (8,10) link if we've included the (8,9,10) subpath. Note the hole. We
must include (8,9,10) in some test cases because that's the only way to reach the c use at link
(9,10) - but suppose our bug for variable V is on link (8,10) after all? Find a covering set of
paths under AU for Figure 3.11.

2. All p-uses/some c-uses strategy (APU+C) : For every variable and every definition
of that variable, include at least one definition free path from the definition to every predicate
use; if there are definitions of the variables that are not covered by the above prescription, then
add computational use test cases as required to cover every definition.

For variable Z:In Figure 3.10, for APU+C we can select paths that all take the upper link (12,13)
and therefore we do not cover the c-use of Z: but that's okay according to the strategy's
definition because every definition is covered. Links (1,3), (4,5), (5,6), and (7,8) must be
included because they contain definitions for variable Z. Links (3,4), (3,5), (8,9), (8,10), (9,6),
and (9,10) must be included because they contain predicate uses of Z. Find a covering set of
test cases under APU+C for all variables in this example - it only takes two tests.

For variable V:In Figure 3.11, APU+C is achieved for V by

(1,3,5,6,7,8,10,11,4,5,6,7,8,10,11,12[upper], 13,2) and (1,3,5,6,7,8,10,11,12[lower], 13,2). Note
that the c-use at (9,10) need not be included under the APU+C criterion.

3. All c-uses/some p-uses strategy (ACU+P) : The all c-uses/some p-uses strategy

(ACU+P) is to first ensure coverage by computational use cases and if any definition is not
covered by the previously selected paths, add such predicate use cases as are needed to
assure that every definition is included in some test.

For variable Z: In Figure 3.10, ACU+P coverage is achieved for Z by path (1,3,4,5,6,7,8,10,
11,12,13[lower], 2), but the predicate uses of several definitions are not covered. Specifically,
the (1,3) definition is not covered for the (3,5) p-use, the (7,8) definition is not covered for the
(8,9), (9,6) and (9, 10) p-uses.

The above examples imply that APU+C is stronger than branch
coverage but ACU+P may be weaker than, or incomparable to,
branch coverage.

4. All Definitions Strategy (AD) : The all definitions strategy asks only every definition of
every variable be covered by atleast one use of that variable, be that use a computational use
or a predicate use.

For variable Z: Path (1,3,4,5,6,7,8, . . .) satisfies this criterion for variable Z, whereas any entry/exit
path satisfies it for variable V.

From the definition of this strategy we would expect it to be
weaker than both ACU+P and APU+C.

5. All Predicate Uses (APU), All Computational Uses (ACU) Strategies : The all
predicate uses strategy is derived from APU+C strategy by dropping the requirement that we
include a c-use for the variable if there are no p-uses for the variable. The all computational
uses strategy is derived from ACU+P strategy by dropping the requirement that we include a p-
use for the variable if there are no c-uses for the variable.

It is intuitively obvious that ACU should be weaker than ACU+P
and that APU should be weaker than APU+C.

ORDERING THE STRATEGIES:
o Figure 3.12 compares path-flow and data-flow testing strategies. The arrows

denote that the strategy at the arrow's tail is stronger than the strategy at the
arrow's head.

Figure 3.12: Relative Strength of Structural Test
Strategies.

o The right-hand side of this graph, along the path from "all paths" to "all

statements" is the more interesting hierarchy for practical applications.
o Note that although ACU+P is stronger than ACU, both are incomparable to the

predicate-biased strategies. Note also that "all definitions" is not comparable to
ACU or APU.

SLICING AND DICING:
o A (static) program slice is a part of a program (e.g., a selected set of

statements) defined with respect to a given variable X (where X is a simple
variable or a data vector) and a statement i: it is the set of all statements that
could (potentially, under static analysis) affect the value of X at statement i -
where the influence of a faulty statement could result from an improper
computational use or predicate use of some other variables at prior
statements.

o If X is incorrect at statement i, it follows that the bug must be in the program
slice for X with respect to i

o A program dice is a part of a slice in which all statements which are known to
be correct have been removed.

o In other words, a dice is obtained from a slice by incorporating information
obtained through testing or experiment (e.g., debugging).

o The debugger first limits her scope to those prior statements that could have
caused the faulty value at statement i (the slice) and then eliminates from
further consideration those statements that testing has shown to be correct.

o Debugging can be modeled as an iterative procedure in which slices are
further refined by dicing, where the dicing information is obtained from ad hoc
tests aimed primarily at eliminating possibilities. Debugging ends when the
dice has been reduced to the one faulty statement.

o Dynamic slicing is a refinement of static slicing in which only statements on
achievable paths to the statement in question are included.

