
UNIT-2(FLOW GRAPHS AND PATH TESTING) 
 

FLOWGRAPHS AND PATH TESTING: 

 
This unit gives an in depth overview of path testing and its applications. 

At the end of this unit, the student will be able to: 

 
 Understand the concept of path testing. 

 Identify the components of a control flow diagram and compare the same with a flowchart. 

 Represent the control flow graph in the form of a Linked List notation. 

 Understand the path testing and selection criteria and their limitations. 

 Interpret a control flow-graph and demonstrate the complete path testing to achieve 
C1+C2. 

 Classify the predicates and variables as dependant/independant and 
correlated/uncorrelated. 

 Understand the path sensitizing method and classify whether the path is achievable or not. 

 Identify the problem due to co-incidental correctness and choose a path instrumentation 
method to overcome the problem. 

 
 

 
BASICS OF PATH TESTING: 

 
 PATH TESTING: 

o Path Testing is the name given to a family of test techniques based on 
judiciously selecting a set of test paths through the program. 

o If the set of paths are properly chosen then we have achieved some measure 
of test thoroughness. For example, pick enough paths to assure that every 
source statement has been executed at least once. 

o Path testing techniques are the oldest of all structural test techniques. 
o Path testing is most applicable to new software for unit testing. It is a structural 

technique. 

o It requires complete knowledge of the program's structure. 
o It is most often used by programmers to unit test their own code. 
o The effectiveness of path testing rapidly deteriorates as the size of the 

software aggregate under test increases. 

 THE BUG ASSUMPTION: 

o The bug assumption for the path testing strategies is that something has gone 
wrong with the software that makes it take a different path than intended. 

o As an example "GOTO X" where "GOTO Y" had been intended. 
o Structured programming languages prevent many of the bugs targeted by path 

testing: as a consequence the effectiveness for path testing for these 
languages is reduced and for old code in COBOL, ALP, FORTRAN and Basic, 
the path testing is indespensable. 

 CONTROL FLOW GRAPHS: 
o The control flow graph is a graphical representation of a program's control 

structure. It uses the elements named process blocks, decisions, and 
junctions. 

o The flow graph is similar to the earlier flowchart, with which it is not to be 
confused. 

o Flow Graph Elements:A flow graph contains four different types of elements. 
(1) Process Block (2) Decisions (3) Junctions (4) Case Statements 

1. Process Block: 
 A process block is a sequence of program statements 

uninterrupted by either decisions or junctions. 



 It is a sequence of statements such that if any one of 
statement of the block is executed, then all statement 
thereof are executed. 

 Formally, a process block is a piece of straight line  
code of one statement or hundreds of statements. 

 A process has one entry and one exit. It can consists of 
a single statement or instruction, a sequence of 
statements or instructions, a single entry/exit 
subroutine, a macro or function call, or a sequence of 
these. 

2. Decisions: 

 A decision is a program point at which the control flow 
can diverge. 

 Machine language conditional branch and conditional 
skip instructions are examples of decisions. 

 Most of the decisions are two-way but some are three 
way branches in control flow. 

3. Case Statements: 
 A case statement is a multi-way branch or decisions. 
 Examples of case statement are a jump table in 

assembly language, and the PASCAL case statement. 
 From the point of view of test design, there are no 

differences between Decisions and Case Statements 
4. Junctions: 

 A junction is a point in the program where the control 
flow can merge. 

 Examples of junctions are: the target of a jump or skip 

instruction in ALP, a label that is a target of GOTO. 
 

 



Figure 2.1: Flowgraph Elements 
 

CONTROL FLOW GRAPHS Vs FLOWCHARTS: 

A program's flow chart resembles a control flow graph. 
In flow graphs, we don't show the details of what is in a process block. 
In flow charts every part of the process block is drawn. 
The flowchart focuses on process steps, where as the flow graph focuses on control 

flow of the program. 
The act of drawing a control flow graph is a useful tool that can help us clarify the 

control flow and data flow issues. 
NOTATIONAL EVOULTION: 
The control flow graph is simplified representation of the program's structure. 
The notation changes made in creation of control flow graphs: 

 The process boxes weren't really needed. There is an implied 
process on every line joining junctions and decisions. 

 We don't need to know the specifics of the decisions, just the fact 
that there is a branch. 

 The specific target label names aren't important-just the fact that 
they exist. So we can replace them by simple numbers. 

 To understand this, we will go through an example (Figure 2.2) 
written   in   a   FORTRAN    like    programming    language   
called Programming Design Language (PDL). The program's 
corresponding flowchart (Figure 2.3) and flowgraph (Figure 2.4) 
were also provided below for better understanding. 

 The first step in translating the program to a flowchart is shown in 
Figure 2.3, where we have the typical one-for-one classical 
flowchart. Note that complexity has increased, clarity has 
decreased, and that we had to add auxiliary labels (LOOP, XX, and 
YY), which have no actual program counterpart. In Figure 2.4 we 
merged the process steps and replaced them with the single 
process box. We now have a control flowgraph. But this 
representation is still too busy. We simplify the notation further to 
achieve Figure 2.5, where for the first time we can really see what 
the control flow looks like. 

 
 

 



Figure 2.2: Program Example (PDL) 
 
 

 
 

 

 
 

 

Figure 2.3: One-to-one flowchart for 
example program in Figure 2.2 

 
 



 

 
 
 

 

Figure 2.4: Control Flowgraph for 
example in Figure 2.2 

 
 

 
 

 

 
 
 
 

Figure 2.5: Simplified Flowgraph Notation 



 
 
 

 
 
 
 

 

Figure 2.6: Even Simplified Flowgraph 
Notation 

 
The final transformation is shown in Figure 2.6, where we've 
dropped the node numbers to achieve an even simpler 
representation. The way to work with control flowgraphs is to use 
the simplest possible representation - that is, no more information 
than you need to correlate back to the source program or PDL. 

 
 

LINKED LIST REPRESENTATION: 

Although graphical representations of flowgraphs are revealing, the details of the 
control flow inside a program they are often inconvenient. 

In linked list representation, each node has a name and there is an entry on the list for 
each link in the flow graph. only the information pertinent to the control flow is shown. 

Linked List representation of Flow Graph: 



 
 

 
 
 

 

Figure 2.7: Linked List Control Flowgraph 
Notation 

 
FLOWGRAPH - PROGRAM CORRESPONDENCE: 

A flow graph is a pictorial representation of a program and not the program itself, just 
as a topographic map. 

You cant always associate the parts of a program in a unique way with flowgraph parts 
because many program structures, such as if-then-else constructs, consists of a combination  
of decisions, junctions, and processes. 

The translation from a flowgraph element to a statement and vice versa is not always 
unique. (See Figure 2.8) 



 

 
 
 
 

Figure 2.8: Alternative Flowgraphs for same logic 
(Statement "IF (A=0) AND (B=1) THEN . . ."). 

 
An improper translation from flowgraph to code during coding can lead to bugs, and 

improper translation during the test design lead to missing test cases and causes undiscovered 
bugs. 

FLOWGRAPH AND FLOWCHART GENERATION: 

Flowcharts can be 
0. Handwritten by the programmer. 
1. Automatically produced by a flowcharting program based on a 

mechanical analysis of the source code. 
2. Semi automatically produced by a flow charting program based in 

part on structural analysis of the source code and in part on 
directions given by the programmer. 

There are relatively few control flow graph generators. 
PATH TESTING - PATHS, NODES AND LINKS: 
Path:a path through a program is a sequence of instructions or statements that starts 

at an entry, junction, or decision and ends at another, or possibly the same junction, decision, 
or exit. 

A path may go through several junctions, processes, or decisions, one or more times. 
Paths consists of segments. 
The segment is a link - a single process that lies between two nodes. 
A path segment is succession of consecutive links that belongs to some path. 
The length of path measured by the number of links in it and not by the number of the 

instructions or statements executed along that path. 
The name of a path is the name of the nodes along the path. 
FUNDAMENTAL PATH SELECTION CRITERIA: 

There are many paths between the entry and exit of a typical routine. 
Every decision doubles the number of potential paths. And every loop multiplies the 

number of potential paths by the number of different iteration values possible for the loop. 
Defining complete testing: 

0. Exercise every path from entry to exit 
1. Exercise every statement or instruction at least once 
2. Exercise every branch and case statement, in each direction at 

least once 



If prescription 1 is followed then 2 and 3 are automatically followed. But it is impractical 
for most routines. It can be done for the routines that have no loops, in which it is equivalent to 
2 and 3 prescriptions. 

EXAMPLE:Here is the correct version. 
 
 

 

 
 

For X negative, the output is X + A, while for X greater than or equal to zero, 
the output is X + 2A. Following prescription 2 and executing every statement, 
but not every branch, would not reveal the bug in the following incorrect 
version: 

 
 

 

 
 

A negative value produces the correct answer. Every statement can be 
executed, but if the test cases do not force each branch to be taken, the bug 
can remain hidden. The next example uses a test based on executing each 
branch but does not force the execution of all statements: 

 
 

 

 
 

The hidden loop around label 100 is not revealed by tests based on 
prescription 3 alone because no test forces the execution of statement 100  
and the following GOTO statement. Furthermore, label 100 is not flagged by 
the compiler as an unreferenced label and the subsequent GOTO does not 
refer to an undefined label. 

 
A Static Analysis (that is, an analysis based on examining the source code or 

structure) cannot determine whether a piece of code is or is not reachable. There could be 
subroutine calls with parameters that are subroutine labels, or in the above example there 



could be a GOTO that targeted label 100 but could never achieve a value that would send the 
program to that label. 

Only a Dynamic Analysis (that is, an analysis based on the code's behavior while 

running - which is to say, to all intents and purposes, testing) can determine whether code is 
reachable or not and therefore distinguish between the ideal structure we think we have and 
the actual, buggy structure. 

PATH TESTING CRITERIA: 
Any testing strategy based on paths must at least both exercise every instruction and 

take branches in all directions. 
A set of tests that does this is not complete in an absolute sense, but it is complete in 

the sense that anything less must leave something untested. 
So we have explored three different testing criteria or strategies out of a potentially 

infinite family of strategies. 
0. Path Testing (Pinf): 

 Execute all possible control flow paths through the 
program: typically, this is restricted to all possible 
entry/exit paths through the program. 

 If we achieve this prescription, we are said to have 
achieved 100% path coverage. This is the strongest 
criterion in the path testing strategy family: it is 
generally impossible to achieve. 

1. Statement Testing (P1): 

 Execute all statements in the program at least once 
under some test. If we do enough tests to achieve this, 
we are said to have achieved 100% statement 
coverage. 

 An alternate equivalent characterization is to say that 
we have achieved 100% node coverage. We denote 
this by C1. 

 This is the weakest criterion in the family: testing less 
than this for new software is unconscionable 
(unprincipled or can not be accepted) and should be 
criminalized. 

2. Branch Testing (P2): 

 Execute enough tests to assure that every branch 
alternative has been exercised at least once under 
some test. 

 If we do enough tests to achieve this prescription, then 
we have achieved 100% branch coverage. 

 An alternative characterization is to say that we have 
achieved 100% link coverage. 

 For structured software, branch testing and therefore 
branch coverage strictly includes statement coverage. 

 We denote branch coverage by C2. 
Commonsense and Strategies: 

 Branch and statement coverage are accepted today as the 
minimum mandatory testing requirement. 

 The question "why not use a judicious sampling of paths?, what is 
wrong with leaving some code, untested?" is ineffectual in the view 
of common sense and experience since: (1.) Not testing a piece of 
a code leaves a residue of bugs in the program in proportion to the 
size of the untested code and the probability of bugs. (2.) The high 
probability paths are always thoroughly tested if only to 
demonstrate that the system works properly. 

 Which paths to be tested? You must pick enough paths to 
achieve C1+C2. The question of what is the fewest number of such 
paths is interesting to the designer of test tools that help automate 
the path testing, but it is not crucial to the pragmatic (practical) 
design of tests. It is better to make many simple paths than a few 
complicated paths. 



 Path Selection Example: 

 

Figure 2.9: An example flowgraph to 
explain path selection 

 
 Practical Suggestions in Path Testing: 

0. Draw the control flow graph on a single sheet of paper. 
1. Make several copies - as many as you will need for 

coverage (C1+C2) and several more. 
2. Use a yellow highlighting marker to trace paths. Copy 

the paths onto a master sheets. 
3. Continue tracing paths until all lines on the  master 

sheet are covered, indicating that you appear to have 
achieved C1+C2. 

4. As you trace the paths, create a table that shows the 
paths, the coverage status of each process, and each 
decision. 

5. The above paths lead to the following table considering 
Figure 2.9: 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LOOPS: 

6. After you have traced a a covering path set on the 
master sheet and filled in the table for every  path, 
check the following: 

1. Does every decision have a YES and a NO 
in its column? (C2) 

2. Has every case of all case statements been 
marked? (C2) 

3. Is every three - way branch (less, equal, 
greater) covered? (C2) 

4. Is every link (process) covered at least 
once? (C1) 

7. Revised Path Selection Rules: 
 Pick the simplest, functionally sensible 

entry/exit path. 
 Pick additional paths as small variation from 

previous paths. Pick paths that do not have 
loops rather than paths that do. Favor short 
paths that make sense over paths that  
don't. 

 Pick additional paths that have no obvious 
functional meaning only if it's necessary to 
provide coverage. 

 Be comfortable with your chosen paths. 
Play your hunches (guesses) and give your 
intuition free reign as long as you achieve 
C1+C2. 

 Don't follow rules slavishly (blindly) - except 
for coverage. 

 

 Cases for a single loop:A Single loop can be covered with two 
cases: Looping and Not looping. But, experience shows that many 
loop-related bugs are not discovered by C1+C2. Bugs hide 
themselves in corners and congregate at boundaries - in the cases 
of loops, at or around the minimum or maximum number of times 
the loop can be iterated. The minimum number of iterations is often 
zero, but it need not be. 
CASE 1: Single loop, Zero minimum, N maximum, No excluded 
values 

0. Try bypassing the loop (zero iterations). If you can't, 
you either have a bug, or zero is not the minimum and 
you have the wrong case. 

1. Could the loop-control variable be negative? Could it 
appear to specify a negative number of iterations?  
What happens to such a value? 

2. One pass through the loop. 
3. Two passes through the loop. 
4. A typical number of iterations, unless covered by a 

previous test. 
5. One less than the maximum number of iterations. 
6. The maximum number of iterations. 
7. Attempt one more than the maximum number of 

iterations. What prevents the loop-control variable from 
having this value? What will happen with this value if it 
is forced? 

 
 

CASE 2: Single loop, Non-zero minimum, No excluded values 

 
8. Try one less than the expected minimum. What 

happens if the loop control variable's value is less than 



the minimum? What prevents the value from being less 
than the minimum? 

9. The minimum number of iterations. 
10. One more than the minimum number of iterations. 
11. Once, unless covered by a previous test. 
12. Twice, unless covered by a previous test. 
13. A typical value. 

14. One less than the maximum value. 
15. The maximum number of iterations. 
16. Attempt one more than the maximum number of 

iterations. 

 
 

CASE 3: Single loops with excluded values 

 
 Treat single loops with excluded values as two sets of 

tests consisting of loops without excluded values, such 
as case 1 and 2 above. 

 Example, the total range of the loop control variable 
was 1 to 20, but that values 7,8,9,10 were excluded. 
The two sets of tests are 1-6 and 11-20. 

 The test cases to attempt would be 0,1,2,4,6,7 for the 
first range and 10,11,15,19,20,21 for the second range. 

 Kinds of Loops:There are only three kinds of loops with respect to 

path testing: 
 Nested Loops: 

 The number of tests to be performed on 
nested loops will be the exponent of the 
tests performed on single loops. 

 As we cannot always afford to test all 
combinations of nested loops' iterations 
values. Here's a tactic used to discard some 
of these values: 

1. Start at the inner most loop. Set 
all the outer loops to their 
minimum values. 

2. Test the minimum, minimum+1, 
typical, maximum-1 , and 
maximum for the innermost  
loop, while holding the outer 
loops at their minimum iteration 
parameter values. Expand the 
tests as required for out of range 
and excluded values. 

3. If you've done the outmost loop, 
GOTO step 5, else move out 
one loop and set it up as in step 
2 with all other loops set to 
typical values. 

4. Continue outward in this manner 
until all loops have been 
covered. 

5. Do all the cases for all loops in 
the nest simultaneously. 

 Concatenated Loops: 
 Concatenated loops fall between single and 

nested loops with respect to test cases. Two 
loops are concatenated if it's possible to 
reach one after exiting the other while still 
on a path from entrance to exit. 



 If the loops cannot be on the same path, 
then they are not concatenated and can be 
treated as individual loops. 

 Horrible Loops: 
 A horrible loop is a combination of nested 

loops, the use of code that jumps into and 
out of loops, intersecting loops, hidden 
loops, and cross connected loops. 

 Makes iteration value selection for test 
cases an awesome and ugly task, which is 
another reason such structures should be 
avoided. 

 
 

 



Figure 2.10: Example of Loop types 
 

 Loop Testing TIme: 

 Any kind of loop can lead to long testing time,  
especially if all the extreme value cases are to 
attempted (Max-1, Max, Max+1). 

 This situation is obviously worse for nested and 
dependent concatenated loops. 

 Consider nested loops in which testing the combination 
of extreme values lead to long test times. Several 
options to deal with: 

 Prove that the combined extreme cases are 
hypothetically possible, they are not 
possible in the real world 

 Put in limits or checks that prevent the 
combined extreme cases. Then you have to 
test the software that implements such 
safety measures. 

 

PREDICATES, PATH PREDICATES AND ACHIEVABLE PATHS: 
 

PREDICATE: The logical function evaluated at a decision is called Predicate. The 
direction taken at a decision depends on the value of decision variable. Some examples are: 
A>0, x+y>=90....... 

PATH PREDICATE: A predicate associated with a path is called a Path Predicate. For 

example, "x is greater than zero", "x+y>=90", "w is either negative or equal to 10 is true" is a 
sequence of predicates whose truth values will cause the routine to take a specific path. 

MULTIWAY BRANCHES: 
 The path taken through a multiway branch such as a computed 

GOTO's, case statement, or jump tables cannot be directly 
expressed in TRUE/FALSE terms. 

 Although, it is possible to describe such alternatives by using multi 
valued logic, an expedient (practical approach) is to express 
multiway branches as an equivalent set of if..then..else statements. 

 For example a three way case statement can be written as: If 
case=1 DO A1 ELSE (IF Case=2 DO A2 ELSE DO A3 
ENDIF)ENDIF. 

INPUTS: 

 In testing, the word input is not restricted to direct inputs, such as 
variables in a subroutine call, but includes all data objects 
referenced by the routine whose values are fixed prior to entering  
it. 

 For example, inputs in a calling sequence, objects in a data 
structure, values left in registers, or any combination of object 
types. 

 The input for a particular test is mapped as a one dimensional 
array called as an Input Vector. 

PREDICATE INTERPRETATION: 

 The simplest predicate depends only on input variables. 
 For example if x1,x2 are inputs, the predicate might be x1+x2>=7, 

given the values of x1 and x2 the direction taken through the 
decision is based on the predicate is determined at input time and 
does not depend on processing. 

 Another example, assume a predicate x1+y>=0 that along a path 
prior to reaching this predicate we had the assignement statement 
y=x2+7. although our predicate depends on processing, we can 
substitute the symbolic expression for y to obtain an equivalent 
predicate x1+x2+7>=0. 



 The act of symbolic substitution of operations along the path in 
order to express the predicate solely in terms of the input vector is 
called predicate interpretation. 

 Some times the interpretation may depend on the path; for 
example, 

 INPUT X 

 ON X GOTO A, B, C, ... 

 A: Z := 7 @ GOTO HEM 

 B: Z := -7 @ GOTO HEM 

 C: Z := 0 @ GOTO HEM 

 ......... 

 HEM: DO SOMETHING 

 ......... 

 HEN: IF Y + Z > 0 GOTO ELL ELSE GOTO EMM 

 

The predicate interpretation at HEN depends on the path we took 
through the first multiway branch. It yields for the three cases 
respectively, if Y+7>0, Y-7>0, Y>0. 

 
 The path predicates are the specific form of the predicates of the 

decisions along the selected path after interpretation. 
INDEPENDENCE OF VARIABLES AND PREDICATES: 

 The path predicates take on truth values based on the values of 
input variables, either directly or indirectly. 

 If a variable's value does not change as a result of processing, that 
variable is independent of the processing. 

 If the variable's value can change as a result of the processing, the 
variable is process dependent. 

 A predicate whose truth value can change as a result of the 
processing is said to be process dependent and one whose truth 
value does not change as a result of the processing is process 
independent. 

 Process dependence of a predicate does not always follow from 
dependence of the input variables on which that predicate is  
based. 

CORRELATION OF VARIABLES AND PREDICATES: 

 Two variables are correlated if every combination of their values 
cannot be independently specified. 

 Variables whose values can be specified independently without 
restriction are called uncorrelated. 

 A pair of predicates whose outcomes depend on one or more 
variables  in  common  are  said  to  be  correlated  predicates.   
For example, the predicate X==Y is followed by another predicate 
X+Y == 8. If we select X and Y values to satisfy the first predicate, 
we might have forced the 2nd predicate's truth value to change. 

 Every path through a routine is achievable only if all the predicates 
in that routine are uncorrelated. 

PATH PREDICATE EXPRESSIONS: 
 A path predicate expression is a set of boolean expressions, all of 

which must be satisfied to achieve the selected path. 
 Example: 

 X1+3X2+17>=0 

 X3=17 

 X4-X1>=14X2 



 Any set of input values that satisfy all of the conditions of the path 
predicate expression will force the routine to the path. 

 Some times a predicate can have an OR in it. 
 Example: 

 

A: X5 > 0 E: X6 < 0 
B: X1 + 3X2 + 17 >= 0 B: X1 + 3X2 + 17 >= 0 
C: X3 = 17 
D: X4 - X1 >= 14X2 

C: X3 = 17 
D: X4 - X1 >= 14X2 

 



 Boolean algebra notation to denote the boolean expression: 

 

ABCD+EBCD=(A+E)BCD 
 

PREDICATE COVERAGE: 
 Compound Predicate: Predicates of the form A OR B, A AND B 

and more complicated boolean expressions are called as 
compound predicates. 

 Some times even a simple predicate becomes compound after 
interpretation. Example: the predicate if (x=17) whose opposite 
branch is if x.NE.17 which is equivalent to x>17 . Or. X<17. 

 Predicate coverage is being the achieving of all possible 
combinations of truth values corresponding to the selected path 
have been explored under some test. 

 As achieving the desired direction at a given decision could still 
hide bugs in the associated predicates. 

TESTING BLINDNESS: 
 Testing Blindness is a pathological (harmful) situation in which the 

desired path is achieved for the wrong reason. 
 There are three types of Testing Blindness: 

0. Assignment Blindness: 

 Assignment blindness occurs when the 
buggy predicate appears to work correctly 
because the specific value chosen for an 
assignment statement works with both the 
correct and incorrect predicate. 

 For Example: 

 
Correct Buggy 

X = 7 
........ 

if Y > 0 then ... 

X = 7 
........ 

if X+Y > 0 then ... 

 
 If the test case sets Y=1 the desired path is 

taken in either case, but there is still a bug. 
1. Equality Blindness: 

 Equality blindness occurs when the path 
selected by a prior predicate results in a 
value that works both for the correct and 
buggy predicate. 

 For Example: 

 
Correct Buggy 

if Y = 2 then 
........ 

if Y = 2 then 
........ 



 

 
 

 The first predicate if y=2 forces the rest of 
the path, so that for any positive value of x. 
the path taken at the second predicate will 
be the same for the correct and buggy 
version. 

2. Self Blindness: 
 Self blindness occurs when the buggy 

predicate is a multiple of the correct 
predicate and as a result is indistinguishable 
along that path. 

 For Example: 

 
Correct Buggy 

X = A 
........ 

if X-1 > 0 then ... 

X = A 
........ 

if X+A-2 > 0 then ... 

 
 The assignment (x=a) makes the predicates 

multiples of each other, so the direction 
taken is the same for the correct and buggy 
version. 

 
 

 

PATH SENSITIZING: 
 

REVIEW: ACHIEVABLE AND UNACHIEVABLE PATHS: 

 We want to select and test enough paths to achieve a satisfactory 
notion of test completeness such as C1+C2. 

 Extract the programs control flowgraph and select a set of tentative 
covering paths. 

 For any path in that set, interpret the predicates along the path as 
needed to express them in terms of the input vector. In general 
individual predicates are compound or may become compound as 
a result of interpretation. 

 Trace the path through, multiplying the individual compound 
predicates to achieve a boolean expression such as 

 

(A+BC) (D+E) (FGH) (IJ) (K) (l) (L). 

 
 Multiply out the expression to achieve a sum of products form: 

 

ADFGHIJKL+AEFGHIJKL+BCDFGHIJKL+BCEFGHIJ 
KL 

 
 Each product term denotes a set of inequalities that if solved will 

yield an input vector that will drive the routine along the designated 
path. 

 Solve any one of the inequality sets for the chosen path and you 
have found a set of input values for the path. 

 If you can find a solution, then the path is achievable. 
 If you cant find a solution to any of the sets of inequalities, the path 

is un achievable. 

if X+Y > 3 then ... if X > 1 then ... 



 The act of finding a set of solutions to the path predicate 
expression is called PATH SENSITIZATION. 

HEURISTIC PROCEDURES FOR SENSITIZING PATHS: 

 This is a workable approach, instead of selecting the paths without 
considering how to sensitize, attempt to choose a covering path set 
that is easy to sensitize and pick hard to sensitize paths only as 
you must to achieve coverage. 

 Identify all variables that affect the decision. 
 Classify the predicates as dependent or independent. 
 Start the path selection with un correlated, independent predicates. 
 If coverage has not been achieved using independent uncorrelated 

predicates, extend the path set using correlated predicates. 
 If coverage has not been achieved extend the cases to those that 

involve dependent predicates. 

 Last, use correlated, dependent predicates. 

 
 

 
PATH INSTRUMENTATION: 

 
PATH INSTRUMENTATION: 

 Path instrumentation is what we have to do to confirm that the 
outcome was achieved by the intended path. 

 Co-incidental Correctness: The coincidental correctness stands 

for achieving the desired outcome for wrong reason. 

 
 

 
 

 

Figure 2.11: Coincidental Correctness 
The above figure is an example of a routine that, for the 

(unfortunately) chosen input value (X = 16), yields the same outcome 
(Y = 2) no matter which case we select. Therefore, the tests chosen 
this way will not tell us whether we have achieved coverage. For 
example, the five cases could be totally jumbled and still the outcome 
would be the same. Path Instrumentation is what we have to do to 
confirm that the outcome was achieved by the intended path. 

 The types of instrumentation methods include: 
0. Interpretive Trace Program: 

 An interpretive trace program is one that 
executes every statement in order and 



records the intermediate values of all 
calculations, the statement labels traversed 
etc. 

 If we run the tested routine under a trace, 
then we have all the information we need to 
confirm the outcome and, furthermore, to 
confirm that it was achieved by the intended 
path. 

 The trouble with traces is that they give us 
far more information than we need. In fact, 
the typical trace program provides so much 
information that confirming the path from its 
massive output dump is more work than 
simulating the computer by hand to confirm 
the path. 

1. Traversal Marker or Link Marker: 

 A simple and effective form of 
instrumentation is called a traversal marker 
or link marker. 

 Name every link by a lower case letter. 
 Instrument the links so that the link's name 

is recorded when the link is executed. 
 The succession of letters produced in going 

from the routine's entry to its exit should, if 
there are no bugs, exactly correspond to the 
path name. 

 

 

2. Figure 2.12: Single Link 
Marker Instrumentation 

 Why Single Link  Markers  aren't  

enough: Unfortunately, a single link marker 

may not do the trick because links can be 

chewed by open bugs. 



3. Figure 2.13: Why 
Single Link 
Markers aren't 

enough. 
4. We intended to traverse the ikm path, but 

because of a rampaging GOTO in the 
middle of the m link, we go to process B. 
If coincidental correctness is against us, 
the outcomes will be the same and we 
won't know about the bug. 

5. Two Link Marker Method: 

 The solution to the problem of single 
link marker method is to implement 
two markers per link: one at the 
beginning of each link and on at the 
end. 

 The two link markers now specify the 
path name and confirm both the 
beginning and end of the link. 

 
6. Figure 2.14: Double 

Link Marker 
Instrumentation. 

7. Link Counter: A less disruptive (and less 

informative) instrumentation method is based on 
counters. Instead of a unique link name to be 
pushed into a string when the link is traversed, we 
simply increment a link  counter. We now confirm 
that the path length is as expected. The same 
problem that led us to double link markers also 
leads us to double link counters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

UNIT-2(PART 2) 
 

TRANSACTION FLOW TESTING AND DATA FLOW TESTING: 

 
This unit gives an indepth overview of two forms of functional or system testing namely 

Transaction Flow Testing and Data Flow Testing. 

At the end of this unit, the student will be able to: 

 
 Understand the concept of transaction flow testing and data flow testing. 

 Visualize the transaction flow and data flow in a software system. 

 Understand the need and appreciate the usage of the two testing methods. 

 Identify the complications in a transaction flow testing method and anomalies in data flow 
testing. 

 Interpret the data flow anomaly state graphs and control flow grpahs and represent the 
state of the data objetcs. 

 Understand the limitations of Static analysis in data flow testing. 

 Compare and analyze various strategies of data flow testing. 

 
 
 

TRANSACTION FLOWS: 

 

 INTRODUCTION: 
o A transaction is a unit of work seen from a system user's point of view. 
o A transaction consists of a sequence of operations, some of which are 

performed by a system, persons or devices that are outside of the system. 
o Transaction begin with Birth-that is they are created as a result of some 

external act. 
o At the conclusion of the transaction's processing, the transaction is no longer 

in the system. 
o Example of a transaction: A transaction for an online information retrieval 

system might consist of the following steps or tasks: 
 Accept input (tentative birth) 
 Validate input (birth) 
 Transmit acknowledgement to requester 
 Do input processing 
 Search file 

 Request directions from user 
 Accept input 
 Validate input 
 Process request 
 Update file 
 Transmit output 
 Record transaction in log and clean up (death) 

 TRANSACTION FLOW GRAPHS: 
o Transaction flows are introduced as a representation of a system's processing. 
o The methods that were applied to control flow graphs are then used for 

functional testing. 
o Transaction flows and transaction flow testing are to the independent system 

tester what control flows are path testing are to the programmer. 
o The transaction flow graph is to create a behavioral model of the program that 

leads to functional testing. 
o The transaction flowgraph is a model of the structure of the system's behavior 

(functionality). 

o An example of a Transaction Flow is as follows: 



 

 
 
 

 

Figure 3.1: An Example of a Transaction Flow 
 

 USAGE: 
o Transaction flows are indispensable for specifying requirements of complicated 

systems, especially online systems. 
o A big system such as an air traffic control or airline reservation system, has not 

hundreds, but thousands of different transaction flows. 
o The flows are represented by relatively simple flowgraphs, many of which have 

a single straight-through path. 
o Loops are infrequent compared to control flowgraphs. 
o The most common loop is used to request a retry after user input errors. An 

ATM system, for example, allows the user to try, say three times, and will take 
the card away the fourth time. 

 COMPLICATIONS: 
o In simple cases, the transactions have a unique identity from the time they're 

created to the time they're completed. 
o In many systems the transactions can give birth to others, and transactions 

can also merge. 
o Births:There are three different possible interpretations of the decision  

symbol, or nodes with two or more out links. It can be a Decision, Biosis or a 
Mitosis. 

1. Decision:Here the transaction will take one alternative or the other alternative but 

not both. (See Figure 3.2 (a)) 
2. Biosis:Here the incoming transaction gives birth to a new transaction, and both 
transaction continue on their separate paths, and the parent retains it identity. (See Figure 
3.2 (b)) 
3. Mitosis:Here the parent transaction is destroyed and two new transactions are 

created.(See Figure 3.2 (c)) 



 

 
 
 

 

Figure 3.2: Nodes with multiple outlinks 
 

Mergers:Transaction flow junction points are potentially as troublesome as transaction 

flow splits. There are three types of junctions: (1) Ordinary Junction (2) Absorption (3) 
Conjugation 
0. Ordinary Junction: An ordinary junction which is similar to the junction in a control 

flow graph. A transaction can arrive either on one link or the other. (See Figure 3.3 (a)) 
1. Absorption: In absorption case, the predator transaction absorbs prey transaction. 
The prey gone but the predator retains its identity. (See Figure 3.3 (b)) 
2. Conjugation: In conjugation case, the two parent transactions merge to form a 

new daughter. In keeping with the biological flavor this case is called as conjugation.(See 

Figure 3.3 (c)) 
 
 
 
 

 

 
 

 
Figure 3.3: Transaction Flow Junctions and 

Mergers 
 

We have no problem with ordinary decisions and junctions. Births, absorptions, and 
conjugations are as problematic for the software designer as they are for the software modeler 
and the test designer; as a consequence, such points have more than their share of bugs. The 
common problems are: lost daughters, wrongful deaths, and illegitimate births. 



TRANSACTION FLOW TESTING TECHNIQUES: 

 
 GET THE TRANSACTIONS FLOWS: 

o Complicated systems that process a lot of different, complicated transactions 
should have explicit representations of the transactions flows, or the 
equivalent. 

o Transaction flows are like control flow graphs, and consequently we should 
expect to have them in increasing levels of detail. 

o The system's design documentation should contain an overview section that 
details the main transaction flows. 

o Detailed transaction flows are a mandatory pre requisite to the rational design 
of a system's functional test. 

 INSPECTIONS, REVIEWS AND WALKTHROUGHS: 
o Transaction flows are natural agenda for system reviews or inspections. 
o In conducting the walkthroughs, you should: 

 Discuss enough transaction types to account for 98%-99% of the 
transaction the system is expected to process. 

 Discuss paths through flows in functional rather than technical 
terms. 

 Ask the designers to relate every flow to the specification and to 
show how that transaction, directly or indirectly, follows from the 
requirements. 

o Make transaction flow testing the corner stone of system functional testing just 
as path testing is the corner stone of unit testing. 

o Select additional flow paths for loops, extreme values, and domain boundaries. 
o Design more test cases to validate all births and deaths. 
o Publish and distribute the selected test paths through the transaction flows as 

early as possible so that they will exert the maximum beneficial effect on the 
project. 

o 

 PATH SELECTION: 
o Select a set of covering paths (c1+c2) using the analogous criteria you used  

for structural path testing. 
o Select a covering set of paths based on functionally sensible transactions as 

you would for control flow graphs. 
o Try to find the most tortuous, longest, strangest path from the entry to the exit 

of the transaction flow. 

 PATH SENSITIZATION: 
o Most of the normal paths are very easy to sensitize-80% - 95%  transaction 

flow coverage (c1+c2) is usually easy to achieve. 

o The remaining small percentage is often very difficult. 
o Sensitization is the act of defining the transaction. If there are sensitization 

problems on the easy paths, then bet on either a bug in transaction flows or a 
design bug. 

 PATH INSTRUMENTATION: 
o Instrumentation plays a bigger role in transaction flow testing than in unit path 

testing. 
o The information of the path taken for a given transaction must be kept with that 

transaction and can be recorded by a central transaction dispatcher or by the 
individual processing modules. 

o In some systems, such traces are provided by the operating systems or a 
running log. 



BASICS OF DATA FLOW TESTING: 

 
 DATA FLOW TESTING: 

o Data flow testing is the name given to a family of test strategies based on 
selecting paths through the program's control flow in order to explore 
sequences of events related to the status of data objects. 

o For example, pick enough paths to assure that every data object has been 
initialized prior to use or that all defined objects have been used for something. 

o Motivation: 
 

it is our belief that, just as one would not feel confident about a 
program without executing every statement in it as part of some 
test, one should not feel confident about a program without 
having seen the effect of using the value produced by each and 
every computation. 

 
 DATA FLOW MACHINES: 

o There are two types of data flow machines with different architectures. (1) Von 
Neumann machnes (2) Multi-instruction, multi-data machines (MIMD). 

o Von Neumann Machine Architecture: 
 Most computers today are von-neumann machines. 
 This architecture features interchangeable storage of instructions 

and data in the same memory units. 
 The Von Neumann machine Architecture executes one instruction 

at a time in the following, micro instruction sequence: 
1. Fetch instruction from memory 
2. Interpret instruction 
3. Fetch operands 
4. Process or Execute 
5. Store result 
6. Increment program counter 
7. GOTO 1 

o Multi-instruction, Multi-data machines (MIMD) Architecture: 
 These machines can fetch several instructions and objects in 

parallel. 
 They can also do arithmetic and logical operations simultaneously 

on different data objects. 
 The decision of how to sequence them depends on the compiler. 

 BUG ASSUMPTION: 
o The bug assumption for data-flow testing strategies is that control flow is 

generally correct and that something has gone wrong with the software so that 
data objects are not available when they should be, or silly things are being 
done to data objects. 

o Also, if there is a control-flow problem, we expect it to have symptoms that can 
be detected by data-flow analysis. 

o Although we'll be doing data-flow testing, we won't be using data flowgraphs  
as such. Rather, we'll use an ordinary control flowgraph annotated to show 
what happens to the data objects of interest at the moment. 

 DATA FLOW GRAPHS: 
o The data flow graph is a graph consisting of nodes and directed links. 



 

 
 
 

 

Figure 3.4: Example of a data flow graph 

 
o We will use an control graph to show what happens to data objects of interest 

at that moment. 
o Our objective is to expose deviations between the data flows we have and the 

data flows we want. 
o Data Object State and Usage: 

 Data Objects can be created, killed and used. 
 They can be used in two distinct ways: (1) In a Calculation (2) As a 

part of a Control Flow Predicate. 
 The following symbols denote these possibilities: 

1. Defined: d - defined, created, initialized etc 
2. Killed or undefined: k - killed, undefined, released etc 
3. Usage: u - used   for something (c - used in 

Calculations, p - used in a predicate) 
 1. Defined (d): 

 An object is defined explicitly when it appears in a data 
declaration. 

 Or implicitly when it appears on the left hand side of the 
assignment. 

 It is also to be used to mean that a file has been 
opened. 

 A dynamically allocated object has been allocated. 
 Something is pushed on to the stack. 
 A record written. 

2. Killed or Undefined (k): 
 An object is killed on undefined when it is released or 

otherwise made unavailable. 



 
 
 
 
 
 
 
 

 
3. Usage 

(u): 

 When its contents are no longer known with certitude 
(with aboslute certainity / perfectness). 

 Release of dynamically allocated objects back to the 
availability pool. 

 Return of records. 
 The old top of the stack after it is popped. 
 An assignment statement can kill and redefine 

immediately. For example, if A had been previously 
defined and we do a new assignment such as A : = 17, 
we have killed A's previous value and redefined A 

 
 A variable is used for computation (c) when it appears 

on the right hand side of an assignment statement. 
 A file record is read or written. 
 It is used in a Predicate (p) when it appears directly in a 

predicate. 

DATA FLOW ANOMALIES: 
An anomaly is denoted by a two-character sequence of actions. 

For example, ku means that the object is killed and then used, where as dd means that 
the object is defined twice without an intervening usage. 

What is an anomaly is depend on the application. 
There are nine possible two-letter combinations for d, k and u. some are bugs, some 

are suspicious, and some are okay. 
0. dd :- probably harmless but suspicious. Why define the object twice without an 

intervening usage? 
1. dk :- probably a bug. Why define the object without using it? 
2. du :- the normal case. The object is defined and then used. 
3. kd :- normal situation. An object is killed and then redefined. 
4. kk :- harmless but probably buggy. Did you want to be sure it was really killed? 
5. ku :- a bug. the object doesnot exist. 
6. ud :- usually not a bug because the language permits reassignment at almost any 

time. 
7. uk :- normal situation. 
8. uu :- normal situation. 

In addition to the two letter situations, there are six single letter situations. 
We will use a leading dash to mean that nothing of interest (d,k,u) occurs prior to the 

action noted along the entry-exit path of interest. 
A trailing dash to mean that nothing happens after the point of interest to the exit. 

They possible anomalies are: 
0. -k :- possibly anomalous because from the entrance to this point on the path, the 

variable had not been defined. We are killing a variable that does not exist. 
1. -d :- okay. This is just the first definition along this path. 
2. -u :- possibly anomalous. Not anomalous if the variable is global and has been 

previously defined. 
3. k- :- not anomalous. The last thing done on this path was to kill the variable. 
4. d- :- possibly anomalous. The variable was defined and not used on this path. But 

this could be a global definition. 
5. u- :- not anomalous. The variable was used but not killed on this path. Although this 

sequence is not anomalous, it signals a frequent kind of bug. If d and k mean dynamic 
storage allocation and return respectively, this could be an instance in which a dynamically 
allocated object was not returned to the pool after use. 

DATA FLOW ANOMALY STATE GRAPH: 
Data flow anomaly model prescribes that an object can be in one of four distinct states: 

0. K :- undefined, previously killed, doesnot exist 
1. D :- defined but not yet used for anything 
2. U :- has been used for computation or in predicate 
3. A :- anomalous 

These capital letters (K,D,U,A) denote the state of the variable and should not be 
confused with the program action, denoted by lower case letters. 



Unforgiving Data - Flow Anomaly Flow Graph:Unforgiving model, in which once a 

variable becomes anomalous it can never return to a state of grace. 

 
 
 

 
 

 
Figure 3.5: Unforgiving Data Flow Anomaly State Graph 

 
Assume that the variable starts in the K state - that is, it has not been defined or 

does not exist. If an attempt is made to use it or to kill it (e.g., say that we're 
talking about opening, closing, and using files and that 'killing' means closing), 
the object's state becomes anomalous (state A) and, once it is anomalous, no 
action can return the variable to a working state. If it is defined (d), it goes into 
the D, or defined but not yet used, state. If it has been defined (D) and 
redefined (d) or killed without use (k), it becomes anomalous, while usage (u) 
brings it to the U state. If in U, redefinition (d) brings it to D, u keeps it in U, and 
k kills it. 

 
Forgiving Data - Flow Anomaly Flow Graph:Forgiving model is an alternate model 

where redemption (recover) from the anomalous state is possible. 

 

 



Figure 3.6: Forgiving Data Flow Anomaly State Graph 
 

This graph has three normal and three anomalous states and he considers the kk 
sequence not to be anomalous. The difference between this state graph  and 
Figure 3.5 is that redemption is possible. A proper action from any of the three 
anomalous states returns the variable to a useful working state. 

 
The point of showing you this alternative anomaly state graph is  to demonstrate 

that the specifics of an anomaly depends on such things as language, 
application, context, or even your frame of mind. In principle, you must create a 
new definition of data flow anomaly (e.g., a new state graph) in each situation. 
You must at least verify that the anomaly definition behind the theory or 
imbedded in a data flow anomaly test tool is appropriate to your situation. 

 

STATIC Vs DYNAMIC ANOMALY DETECTION: 
Static analysis is analysis done on source code without actually executing it. For 

example: source code syntax error detection is the static analysis result. 
Dynamic analysis is done on the fly as the program is being executed and is based on 

intermediate values that result from the program's execution. For example: a division by zero 
warning is the dynamic result. 

If a problem, such as a data flow anomaly, can be detected by static analysis methods, 
then it doesnot belongs in testing - it belongs in the language processor. 

There is actually a lot more static analysis for data flow analysis for data flow 
anomalies going on in current language processors. 

For example, language processors which force variable declarations can detect (-u) 
and (ku) anomalies. 

But still there are many things for which current notions of static analysis are 
INADEQUATE. 

Why Static Analysis isn't enough? There are many things for which current notions 

of static analysis are inadequate. They are: 
 Dead Variables:Although it is often possible to prove that a 

variable is dead or alive at a given point in the program,  the 
general problem is unsolvable. 

 Arrays:Arrays are problematic in that the array is defined or killed 
as a single object, but reference is to specific locations within the 
array. Array pointers are usually dynamically calculated, so there's 
no way to do a static analysis to validate the pointer value. In many 
languages, dynamically allocated arrays contain garbage unless 
explicitly initialized and therefore, -u anomalies are possible. 

 Records and Pointers:The array problem and the difficulty with 
pointers is a special case of multipart data structures. We have the 

same problem with records and the pointers to them. Also, in many 
applications we create files and their names dynamically and 
there's no way to determine, without execution, whether such 
objects are in the proper state on a given path or, for that matter, 
whether they exist at all. 

 Dynamic Subroutine and Function Names in a Call:subroutine 
or function name is a dynamic variable in a call. What is passed, or 
a combination of subroutine names and data objects, is  
constructed on a specific path. There's no way, without executing 
the path, to determine whether the call is correct or not. 

 False Anomalies:Anomalies are specific to paths. Even a "clear 
bug" such as ku may not be a bug if the path along which the 
anomaly exist is unachievable. Such "anomalies" are false 
anomalies. Unfortunately, the problem of determining whether a 
path is or is not achievable is unsolvable. 



 Recoverable Anomalies and Alternate State Graphs:What 
constitutes an anomaly depends on context, application, and 
semantics. How does the compiler know which model I have in 
mind? It can't because the definition of "anomaly" is not 
fundamental. The language processor must have a  built-in 
anomaly definition with which you may or may not (with good 
reason) agree. 

 Concurrency, Interrupts, System Issues:As soon as we  get 
away from the simple single-task uniprocessor environment and 
start thinking in terms of systems, most anomaly issues become 
vastly more complicated. How often do we define or create data 
objects at an interrupt level so that they can be processed by a 
lower-priority routine? Interrupts can make the "correct" anomalous 
and the "anomalous" correct. True concurrency (as in an MIMD 
machine) and pseudoconcurrency (as in multiprocessing) systems 
can do the same to us. Much of integration and system testing is 
aimed at detecting data-flow anomalies that cannot be detected in 
the context of a single routine. 

Although static analysis methods have limits, they are worth using and a continuing 
trend in language processor design has been better static analysis methods, especially for data 
flow anomaly detection. That's good because it means there's less for us to do as testers and 
we have far too much to do as it is. 

DATA FLOW MODEL: 
The data flow model is based on the program's control flow graph - Don't confuse that 

with the program's data flowgraph.. 
Here we annotate each link with symbols (for example, d, k, u, c, p) or sequences of 

symbols (for example, dd, du, ddd) that denote the sequence of data operations on that link 
with respect to the variable of interest. Such annotations are called link weights. 

The control flow graph structure is same for every variable: it is the weights that 
change.  

Components of the model: 
0. To every statement there is a node, whose name is unique. Every 

node has at least one outlink and at least one inlink except for exit 
nodes and entry nodes. 

1. Exit nodes are dummy nodes placed at the outgoing arrowheads of 
exit statements (e.g., END, RETURN), to complete the graph. 
Similarly, entry nodes are dummy nodes placed at entry 
statements (e.g., BEGIN) for the same reason. 

2. The outlink of simple statements (statements with only one outlink) 
are weighted by the proper sequence of data-flow actions for that 
statement. Note that the sequence can consist of more than one 
letter. For example, the assignment statement A:= A + B in most 
languages is weighted by cd or possibly ckd for variable A. 
Languages that permit multiple simultaneous assignments and/or 
compound statements can have anomalies within the statement. 
The sequence must correspond to the order in which the object 
code will be executed for that variable. 

3. Predicate nodes (e.g., IF-THEN-ELSE, DO WHILE, CASE) are 
weighted with the p - use(s) on every outlink, appropriate to that 
outlink. 

4. Every sequence of simple statements (e.g., a sequence of nodes 
with one inlink and one outlink) can be replaced by a pair of nodes 
that has, as weights on the link between them, the concatenation of 
link weights. 

5. If there are several data-flow actions on a given link for a given 
variable, then the weight of the link is denoted by the sequence of 
actions on that link for that variable. 

6. Conversely, a link with several data-flow actions on it can be 
replaced by a succession of equivalent links, each of which has at 
most one data-flow action for any variable. 



Let us consider the example: 
 
 

 

 
 
 
 

Figure 3.7: Program Example (PDL) 
 
 

 
 

 

 
 
 

 

Figure 3.8: Unannotated flowgraph for example 
program in Figure 3.7 

 
 



 
 
 
 

 

Figure 3.9: Control flowgraph annotated for X and 
Y data flows. 

 
 

 
 

 

 
 
 
 

Figure 3.10: Control flowgraph annotated for Z 
data flow. 

 
 



 
 

 
 

Figure 3.11: Control flowgraph annotated for V data 
flow. 

 
STRATEGIES OF DATA FLOW TESTING: 

 
 INTRODUCTION: 

o Data Flow Testing Strategies are structural strategies. 
o In contrast to the path-testing strategies, data-flow strategies take into account 

what happens to data objects on the links in addition to the raw connectivity of 
the graph. 

o In other words, data flow strategies require data-flow link weights (d,k,u,c,p). 
o Data Flow Testing Strategies are based on selecting test path segments (also 

called sub paths) that satisfy some characteristic of data flows for all data 
objects. 

o For example, all subpaths that contain a d (or u, k, du, dk). 
o A strategy X is stronger than another strategy Y if all test cases produced 

under Y are included in those produced under X - conversely for weaker. 

 TERMINOLOGY: 
1. Definition-Clear Path Segment, with respect to variable X, is a connected sequence 
of links such that X is (possibly) defined on the first link and not redefined or killed on any 
subsequent link of that path segment. ll paths in Figure 3.9 are definition clear because 
variables X and Y are defined only on the first link (1,3) and not thereafter. In Figure 3.10, we 
have a more complicated situation. The following path segments are definition-clear: (1,3,4), 
(1,3,5), (5,6,7,4), (7,8,9,6,7), (7,8,9,10), (7,8,10), (7,8,10,11). Subpath (1,3,4,5) is not definition- 
clear because the variable is defined on (1,3) and again on (4,5). For practice, try finding all the 
definition-clear subpaths for this routine (i.e., for all variables). 
2. Loop-Free Path Segment is a path segment for which every node in it is visited 

atmost once. For Example, path (4,5,6,7,8,10) in Figure 3.10 is loop free, but path 
(10,11,4,5,6,7,8,10,11,12) is not because nodes 10 and 11 are each visited twice. 
3. Simple path segment is a path segment in which at most one node is visited twice. 
For example, in Figure 3.10, (7,4,5,6,7) is a simple path segment. A simple path segment is 
either loop-free or if there is a loop, only one node is involved. 
4. A du path from node i to k is a path segment such that if the last link has a 

computational use of X, then the path is simple and definition-clear; if the penultimate (last but 
one) node is j - that is, the path is (i,p,q,...,r,s,t,j,k) and link (j,k) has a predicate use - then the 
path from i to j is both loop-free and definition-clear. 

STRATEGIES: The structural test strategies discussed below are based on the program's 
control flowgraph. They differ in the extent to which predicate uses and/or computational uses of 
variables are included in the test set. Various types of data flow testing strategies in decreasing 
order of their effectiveness are: 

 

0. All - du Paths (ADUP): The all-du-paths (ADUP) strategy is the strongest data-flow 
testing strategy discussed here. It requires that every du path from every definition of every 
variable to every use of that definition be exercised under some test. 



For variable X and Y:In Figure 3.9, because variables X and Y are used only on link (1,3), any test 
that starts at the entry satisfies this criterion (for variables X and Y, but not for all variables as
 required by the strategy). 

 

For variable Z: The situation for variable Z (Figure 3.10) is more complicated because the variable 
is redefined in many places. For the definition on link (1,3) we must exercise paths that include 
subpaths (1,3,4) and (1,3,5). The definition on link (4,5) is covered by any path that includes 
(5,6), such as subpath (1,3,4,5,6, ...). The (5,6) definition requires paths that include subpaths
 (5,6,7,4) and (5,6,7,8). 

 

For variable V: Variable V (Figure 3.11) is defined only once on link (1,3). Because V has a 
predicate use at node 12 and the subsequent path to the end must be forced for  both 
directions at node 12, the all-du-paths strategy for this variable requires that we exercise all 
loop-free entry/exit paths and at least one path that includes the loop caused by (11,4). Note 
that we must test paths that include both subpaths (3,4,5) and (3,5) even though neither of 
these has V definitions. They must be included because they provide alternate du paths to the 
V use on link (5,6). Although (7,4) is not used in the test set for variable V, it will be included in 
the test set that covers the predicate uses of array variable V() and U. 

 
The all-du-paths strategy is a strong criterion, but it does not take as many tests as it might seem at 

first because any one test simultaneously satisfies the criterion for several definitions and uses 
of several different variables. 

 
1. All Uses Startegy (AU):The all uses strategy is that at least one definition clear path 
from every definition of every variable to every use of that definition be exercised under some 
test. Just as we reduced our ambitions by stepping down from all paths (P) to branch coverage 
(C2), say, we can reduce the number of test cases by asking that the test set should include at 
least one path segment from every definition to every use that can be reached by that 
definition. 

 

For variable V: In Figure 3.11, ADUP requires that we include subpaths (3,4,5) and (3,5) in some 
test because subsequent uses of V, such as on link (5,6), can be reached by either alternative. 
In AU either (3,4,5) or (3,5) can be used to start paths, but we don't have to use  both. 
Similarly, we can skip the (8,10) link if we've included the (8,9,10) subpath. Note the hole. We 
must include (8,9,10) in some test cases because that's the only way to reach the c use at link 
(9,10) - but suppose our bug for variable V is on link (8,10) after all? Find a covering set of 
paths under AU for Figure 3.11. 

 

2. All p-uses/some c-uses strategy (APU+C) : For every variable and every definition 
of that variable, include at least one definition free path from the definition to every predicate 
use; if there are definitions of the variables that are not covered by the above prescription, then 
add computational use test cases as required to cover every definition. 

 

For variable Z:In Figure 3.10, for APU+C we can select paths that all take the upper link (12,13) 
and therefore we do not cover the c-use of Z: but that's okay according to the strategy's 
definition because every definition is covered. Links (1,3), (4,5), (5,6), and (7,8) must be 
included because they contain definitions for variable Z. Links (3,4), (3,5), (8,9), (8,10), (9,6), 
and (9,10) must be included because they contain predicate uses of Z. Find a covering set of 
test cases under APU+C for all variables in this example - it only takes two tests. 

 

For variable V:In Figure 3.11, APU+C is achieved for V by 

(1,3,5,6,7,8,10,11,4,5,6,7,8,10,11,12[upper], 13,2) and (1,3,5,6,7,8,10,11,12[lower], 13,2). Note 
that the c-use at (9,10) need not be included under the APU+C criterion. 

 
3. All c-uses/some p-uses strategy (ACU+P) : The all c-uses/some p-uses strategy 

(ACU+P) is to first ensure coverage by computational use cases and if any definition is not 
covered by the previously selected paths, add such predicate use cases as are needed to 
assure that every definition is included in some test. 



For variable Z: In Figure 3.10, ACU+P coverage is achieved for Z by path (1,3,4,5,6,7,8,10, 
11,12,13[lower], 2), but the predicate uses of several definitions are not covered. Specifically, 
the (1,3) definition is not covered for the (3,5) p-use, the (7,8) definition is not covered for the 
(8,9), (9,6) and (9, 10) p-uses. 

 
The above examples imply that APU+C is stronger than branch 
coverage but ACU+P may be weaker than, or incomparable to, 
branch coverage. 

 
4. All Definitions Strategy (AD) : The all definitions strategy asks only every definition of 
every variable be covered by atleast one use of that variable, be that use a computational use 
or a predicate use. 

 

For variable Z: Path (1,3,4,5,6,7,8, . . .) satisfies this criterion for variable Z, whereas any entry/exit 
path satisfies it for variable V. 

 
From the definition of this strategy we would expect it to be 
weaker than both ACU+P and APU+C. 

 
5. All Predicate Uses (APU), All Computational Uses (ACU) Strategies : The all 
predicate uses strategy is derived from APU+C strategy by dropping the requirement that we 
include a c-use for the variable if there are no p-uses for the variable. The all computational 
uses strategy is derived from ACU+P strategy by dropping the requirement that we include a p- 
use for the variable if there are no c-uses for the variable. 

 
It is intuitively obvious that ACU should be weaker than ACU+P 
and that APU should be weaker than APU+C. 

 

ORDERING THE STRATEGIES: 
o Figure 3.12 compares path-flow and data-flow testing strategies. The arrows 

denote that the strategy at the arrow's tail is stronger than the strategy at the 
arrow's head. 



 
 
 
 

 

Figure 3.12: Relative Strength of Structural Test 
Strategies. 

 
o The right-hand side of this graph, along the path from "all paths" to "all 

statements" is the more interesting hierarchy for practical applications. 
o Note that although ACU+P is stronger than ACU, both are incomparable to the 

predicate-biased strategies. Note also that "all definitions" is not comparable to 
ACU or APU. 

SLICING AND DICING: 
o A (static) program slice is a part of a program (e.g., a selected set of 

statements) defined with respect to a given variable X (where X is a simple 
variable or a data vector) and a statement i: it is the set of all statements that 
could (potentially, under static analysis) affect the value of X at statement i - 
where the influence of a faulty statement could result from an improper 
computational use or predicate use of some other variables at  prior 
statements. 

o If X is incorrect at statement i, it follows that the bug must be in the program 
slice for X with respect to i 

o A program dice is a part of a slice in which all statements which are known to 
be correct have been removed. 

o In other words, a dice is obtained from a slice by incorporating information 
obtained through testing or experiment (e.g., debugging). 

o The debugger first limits her scope to those prior statements that could have 
caused the faulty value at statement i (the slice) and then eliminates from 
further consideration those statements that testing has shown to be correct. 

o Debugging can be modeled as an iterative procedure in which slices are 
further refined by dicing, where the dicing information is obtained from ad hoc 
tests aimed primarily at eliminating possibilities. Debugging ends when the 
dice has been reduced to the one faulty statement. 



o Dynamic slicing is a refinement of static slicing in which only statements on 
achievable paths to the statement in question are included. 

 


